ORIGINS OF SOCKEYE SALMON IN 1993 EASTSIDE BRISTOL BAY FISHERIES BASED ON LINEAR DISCRIMINANT FUNCTION ANALYSIS OF SCALE PATTERNS By James D. Miller Regional Information Report¹ No. 2A95-24 Alaska Department of Fish and Game Division of Commercial Fisheries Management and Development Central Region 333 Raspberry Road Anchorage, Alaska 99518-1599 May 1995 ¹The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished Divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate needs for up-to-date information, reports in this series may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without approval of the author or the Division of Commercial Fisheries Management and Development. #### **AUTHOR** James D. Miller is a Region II Bristol Bay Research Biologist for the Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, 333 Raspberry Road, Anchorage, Alaska, 99518-1599. #### **ACKNOWLEDGMENTS** The entire Eastside Bristol Bay full-time and seasonal staff of the Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development assisted in collecting data used to generate the 1993 stock composition estimates. Bev Cross, Bristol Bay Research Project Leader, provided technical and editorial assistance. # TABLE OF CONTENTS | <u>Page</u> | |--| | LIST OF TABLES | | LIST OF FIGURES vi | | LIST OF APPENDICESviii | | ABSTRACTix | | INTRODUCTION | | METHODS 2 | | Catch and Escapement Estimation | | Age Composition Estimation | | Catch Composition Estimation | | Scale Measurements | | Linear Discriminant Analysis | | Construction of Age-2.2 Models | | Separation of Kvichak/Naknek/Ugashik Age-2.3 Catch 5 | | Other Age Group Stock Composition Estimation | | Run Size Estimation 7 | | RESULTS 7 | | Catch and Escapement | | Age Composition | # TABLE OF CONTENTS (Continued) | <u>Pag</u> | <u>ge</u> | |--------------------------------|-----------| | Classification Models | 8 | | Age 2.2 | 8
8 | | Estimates of Catch Composition | 9 | | Age 2.2 | 9 | | Harvest Distribution | 10 | | Run By River System | 11 | | Run Distribution | 11 | | ITERATURE CITED | 12 | | CABLES | 15 | | FIGURES | 40 | | APPENDIX | 59 | # LIST OF TABLES | <u>Table</u> | <u>P</u> | age | |--------------|---|-----| | 1. | Sockeye salmon commercial catch by district and date for the Eastside of Bristol Bay, 1993 | 15 | | 2. | Sockeye salmon escapement by river and date for the Eastside of Bristol Bay, 1993 | 16 | | 3. | Sockeye salmon age composition by brood year in the commercial catch for the Eastside of Bristol Bay, 1993 | 17 | | 4. | Sockeye salmon age composition by brood year in the escapement for the Eastside of Bristol Bay, 1993 | 18 | | 5. | Mean and standard error of age-2.2 scale variables used to construct linear discriminant functions for the Eastside of Bristol Bay, 1993 | 19 | | 6. | Classification matrices from discriminant analyses of age-2.2 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1993 | 20 | | 7. | Mean and standard error of age-2.3 scale variables used to construct linear discriminant functions for the Eastside of Bristol Bay, 1993 | 23 | | 8. | Classification matrices from discriminant analyses of age-2.3 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1993 | 24 | | 9. | Run composition estimates and 90% confidence intervals (C.I.) calculated from scale pattern analyses of age-2.2 sockeye salmon by fishery and date for the Eastside of Bristol Bay, 1993 | 25 | | 10. | Estimated harvest of age-2.2 sockeye salmon and 90% confidence intervals (C.I.), Eastside of Bristol Bay, 1993 | 26 | | 11. | Run composition estimates and 90% confidence intervals (C.I.) calculated from scale pattern analyses of age-2.3 sockeye salmon by fishery and date, Naknek-Kvichak and Egegik Districts, 1993 | 27 | | 12. | Estimated harvest of age-2.3 sockeye salmon and 90% confidence intervals (C.I.), Naknek-Kvichak and Egegik Districts, 1993 | 28 | | 13. | Run composition estimates of sockeye salmon catch by age group and date, Naknek-Kvichak District, 1993 | 29 | # LIST OF TABLES (Continued) | <u>Table</u> | <u>Page</u> | |---------------|--| | 14. | Run composition estimates of sockeye salmon catch by age group and date, Egegik District, 1993 | | 15. | Run composition estimates of sockeye salmon catch by age group and date, Ugashik District, 1993 | | 16. | Catch of sockeye salmon by run and district for the Eastside of Bristol Bay, 1993 | | 17. | Numbers of sockeye salmon by run and age group for the Eastside of Bristol Bay, 1993 | | 18. | Percentages of sockeye salmon by run and age group for the Eastside of Bristol Bay, 1993 | | 19. | Comparison of sockeye salmon run estimates for the Eastside of Bristol Bay, 1993 | | | LIST OF FIGURES | | <u>Figure</u> | <u>Page</u> | | 1. | Map of Bristol Bay showing major rivers and fishing districts 40 | | 2. | Commercial catch of sockeye salmon in Naknek-Kvichak, Egegik, and Ugashik Districts from 1978 through 1993 | | 3. | Age-2.2 sockeye salmon scale showing the growth zones measured to generate variables to build linear discriminant functions | | 4. | Total size of all freshwater growth zones (S1FW+S2FW+SPGZ) for age-2.3 sockeye salmon escapement scales, Kvichak, Naknek, and Ugashik Rivers, 1993 | # LIST OF FIGURES (Continued) | Figure | Page Page | |--------|---| | 5. | Total size of first and second freshwater growth zones (S1FW+S2FW) for age-2.2 sockeye salmon escapement scales, Kvichak, Naknek, Egegik, and Ugashik Rivers, 1993 | | 6. | Total number of circuli in all freshwater growth zones (N1FW+N2FW+NPGZ) for age-2.3 sockeye salmon escapement scales, Egegik, and Kvichak/Naknek/Ugashik (Other) Rivers combined, 1993 45 | | 7. | Stock composition estimates for 1993 Naknek-Kvichak District age-2.2 sockeye salmon catch in percent and numbers through time | | 8. | Stock composition estimates for 1993 Egegik District age-2.2 sockeye salmon catch in percent and numbers through time | | 9. | Stock composition estimates for 1993 Ugashik District age-2.2 sockeye salmon catch in percent and numbers through time | | 10. | Stock composition estimates for 1993 Naknek-Kvichak District age-2.3 sockeye salmon catch in percent and numbers through time 49 | | 11. | Stock composition estimates for 1993 Egegik District age-2.3 sockeye salmon catch in percent and numbers through time | | 12. | Stock composition estimates for 1993 Ugashik District age-2.3 sockeye salmon catch in percent and numbers through time | | 13. | Stock composition estimates for 1993 Naknek-Kvichak District total sockeye salmon catch in percent and numbers through time | | 14. | Stock composition estimates for 1993 Egegik District total sockeye salmon catch in percent and numbers through time | | 15. | Stock composition estimates for 1993 Ugashik District total sockeye salmon catch in percent and numbers through time | | 16. | Estimated 1993 Kvichak River sockeye salmon run, escapement, in-district catch, and other district catch for ages 2.2 and 2.3, and all ages combined 55 | | 17. | Estimated 1993 Naknek River sockeye salmon run, escapement, in-district catch, and other district catch for ages 2.2 and 2.3, and all ages combined 56 | # LIST OF FIGURES (Continued) | Figure | <u>Page</u> | |--------|---| | 18. | Estimated 1993 Egegik River sockeye salmon run, escapement, in-district catch, and other district catch for ages 2.2 and 2.3, and all ages combined 57 | | 19. | Estimated 1993 Ugashik River sockeye salmon run, escapement, in-district catch, and other district catch for ages 2.2 and 2.3, and all ages combined 58 | | | LIST OF APPENDICES | | Apper | <u>Page</u> | | A.1. | Scale variables screened for linear discriminant function analysis of age-2.2 and -2.3 sockeye salmon for the Eastside of Bristol Bay, 1993 59 | #### **ABSTRACT** Stock composition of the 1993 commercial sockeye salmon Oncorhynchus nerka harvests in Naknek-Kvichak, Egegik, and Ugashik Districts, Bristol Bay, Alaska, were estimated with scale pattern analyses and age composition. Scale measurements from age-2.2 and -2.3 sockeve salmon escapement samples were used to build discriminant functions which allowed the stock composition of these age groups in the commercial catch to be estimated. Stock origins for other age groups were estimated by combining age-2.2 and -2.3 scale pattern analyses with escapement age compositions. Most sockeye salmon harvested had originated from rivers within the fishing district; however, harvest of outside stocks occurred in every district. Of the estimated 8,907,876 sockeye salmon caught in Naknek-Kvichak District, 44.3% were from Kvichak River, 41.8% from Naknek River, 9.0% from Egegik River, and 4.9% from Ugashik River. The estimated 21,600,858 sockeye salmon caught in Egegik District were composed of the following stocks: 87.5% Egegik, 7.3% Ugashik, 3.8% Naknek, and 1.4% Kvichak Rivers. The estimated Ugashik District harvest of 4,176,900 sockeye salmon was 63.3% Ugashik
River, 24.0% Naknek River, 12.5% Egegik River, and 0.2% Kvichak River origin. Estimated exploitation rates were 93.0% for Egegik River, 78.3% for Naknek River, 77.0% for Ugashik River, and 51.5% for Kvichak River stocks. **KEY WORDS:** Sockeye salmon *Oncorhynchus nerka*, Bristol Bay, scale pattern analysis, linear discriminant analysis, stock composition, exploitation rate #### INTRODUCTION To facilitate discrete stock management, the Bristol Bay sockeye salmon *Oncorhynchus nerka* fishery is restricted to districts located near the mouths of major spawning streams (Figure 1). However, the close proximity of these spawning streams and annual variation in migratory routes causes stock mixing in the fisheries. The Bristol Bay Management Area is divided into two general fisheries, the East and West Side. The Eastside fishery is composed of Naknek-Kvichak, Egegik, and Ugashik Districts (Figure 1); the Westside fishery includes Nushagak and Togiak Districts. Naknek-Kvichak District is subdivided into Naknek and Kvichak Sections. From 1956 to present, stock composition estimates from Naknek-Kvichak District harvests have been based on escapement age composition estimates from Kvichak, Alagnak (Branch), and Naknek Rivers. Total runs of sockeye salmon to Egegik and Ugashik Rivers were estimated by adding the district catch to the district escapement. This standard method assumes (1) that all fish harvested in a district were returning to rivers within that district, and (2) equal exploitation among stocks. Complete results of the standard method have been summarized and published in separate reports (Stratton 1991; Stratton and Crawford 1992); Stratton and Crawford (1994). Bernard (1983) evaluated the biases inherent with this procedure. More recently a second method based on linear discriminant function analysis of scale patterns has been used as well as the standard method. Use of this method began when decreased catches of sockeye salmon in Naknek-Kvichak District in 1985 and 1986 prompted concerns that these fish were being intercepted in Egegik and Ugashik Districts where catches were large (Figure 2). Straty (1975), after conducting a tagging study from 1955 to 1957, concluded that Eastside sockeye salmon stocks mixed in all Eastside districts and that Westside stocks were not present in appreciable numbers in Eastside districts. Examining the 1985 Eastside commercial catches, Fried and Yuen (1985) found that scale pattern analysis could accurately identify major Eastside sockeye salmon stocks. Scale pattern studies were expanded and stock compositions of Eastside district catches were recently estimated by Burns (1991) for the 1983 and 1984 runs; estimates for 1986 to 1992 have also been completed (Bue et al. 1986; Cross and Stratton 1989; Cross and Stratton 1991; Cross et al. 1992; Stratton et al. 1992; Stratton and Miller 1993; Stratton and Miller 1994). Objectives of this ongoing investigation of Eastside sockeye salmon runs include (1) estimation of stock composition in Eastside commercial sockeye salmon harvests; (2) estimation of total run by river; and (3) comparison of run estimates by river as obtained from scale pattern analyses versus the standard method. For this report, the objectives were specific to the 1993 run. #### **METHODS** # Catch and Escapement Estimation Commercial catch statistics are final and were taken from fish ticket summaries produced by Computer Services. Sockeye salmon escapement estimates were based on visual counts made from towers on the banks of Kvichak, Naknek, Egegik, and Ugashik Rivers (ADF&G 1994). # Age Composition Estimation European notation (Koo 1962) was used to record ages; numerals preceding the decimal refer to number of freshwater annuli, numerals following the decimal refer to number of marine annuli. Total age from time of egg deposition (brood year) is the sum of these numbers plus one. Complete methods and results of sampling Bristol Bay sockeye salmon catches and escapements have been summarized and published in separate reports (Stratton 1991; Stratton and Crawford 1992; Stratton and Crawford 1994). The 1993 sampling efforts will be similarly reported. ## Catch Composition Estimation Linear discriminant function analysis (Fisher 1936) of scale patterns combined with age composition data were used to determine sockeye salmon stock origins in 1993 Eastside harvests. #### Scale Measurements Scale impressions were projected at 100X magnification onto a digitizing tablet using equipment similar to that described by Ryan and Christie (1976). Measurements were taken along the anterior-posterior axis to standardize each scale. This axis is approximately 20° ventral of the long axis and perpendicular to the anterior sculptured field (Figure 3). Distances between growth rings, or circuli, were measured to the nearest 0.01 in, and number of circuli were counted from (1) center of scale focus to outside edge of first freshwater annulus (first freshwater annular zone), (2) outside edge of first freshwater annulus to outside edge of second freshwater annulus (second freshwater annular zone), (3) outside edge of last freshwater annulus to end of freshwater growth (freshwater plus growth zone), if present, and (4) outside edge of last freshwater circulus to outer edge of first ocean annulus (first marine annular zone). Total distance from the outside edge of first ocean annulus to outside edge of second ocean annulus (second marine annular zone) was recorded for age-2.3 sockeye salmon. A total of 108 variables for age-2.2 samples and 109 variables for age-2.3 samples were computed from distance measurements and circuli counts (Appendix A.1). # Linear Discriminant Analysis Escapement samples from Kvichak, Naknek, Egegik, and Ugashik Rivers provided knownorigin scales to build linear discriminant functions (LDF). Commercial catch samples provided scales of unknown origin. Escapement samples collected in 1993 were used to classify 1993 commercial catches in age-specific LDF models. Frequency distribution plots for principal scale variables for each growth zone were examined. Scale variable selection for each discriminant model was made using a forward stepping procedure with partial F-statistics as criteria for entry or removal of variables (Enslein et al. 1977). This process was continued until model accuracy ceased improving. The equality of variance-covariance matrices were tested using an F-statistic described by Box (1949). A nearly unbiased estimate of overall classification accuracy for each LDF was determined with a "leaving-one-out procedure" (Lachenbruch 1967). Construction of Age-2.2 Models. A four-way linear discriminant model was built from scale measurements of age-2.2 sockeye salmon entering Kvichak, Naknek, Egegik, and Ugashik Rivers. Scale samples weighted by run strength through time were used to build the discriminant models. Classification of Age-2.2 Sockeye Salmon. The four-way linear discriminant model was used to assign unknown age-2.2 samples to river of origin. Stock proportions in the catches estimated from the model were adjusted for misclassification error with the procedure of Cook and Lord (1978). The adjusted proportions were assumed to reflect true stock composition. A catch sample was reclassified with a model containing fewer stocks if the adjusted proportion ≤ 0 for one or more stocks in the four-way model. Variance and 90% confidence intervals around adjusted estimates were computed using the procedure of Pella and Robertson (1979). The number of age-2.2 sockeye salmon for stock i in a specific catch stratum, $(\hat{C}_{i2.2})$ was calculated as $$\hat{C}_{i2,2} = \hat{C}\hat{P}_{2,2}\hat{S}_{i2,2},\tag{1}$$ where: Ĉ = estimated catch of sockeye salmon in a fishery at a given time, $\dot{P}_{2.2}$ = estimated proportion of age-2.2 sockeye salmon in the catch, and $S_{i2.2}$ = estimated proportion of age-2.2 sockeye salmon of stock *i* in the catch In this procedure, the variance about catch (\hat{C}) is not evaluated. Consequently, a conditional variance of the estimated age-2.2 sockeye salmon catch ($V[\hat{C}_{i2.2}]$) for each stock in a specific fishery at a given time was calculated as described by Goodman (1960). This provided an exact variance of a product conditional on catch: $$V[\hat{C}_{i_{2,2}}] = C^2 V[\hat{P}_{2,2} \hat{S}_{i_{2,2}}], \qquad (2)$$ $$V[\hat{P}_{2,2}\hat{S}_{i2,2}] = V[\hat{P}_{2,2}]\hat{S}_{i2,2}^2 + V[\hat{S}_{i2,2}]\hat{P}_{2,2}^2 - V[\hat{S}_{i2,2}]V[\hat{P}_{2,2}]. \tag{3}$$ Contributions for each stock through time for a specific fishery were added to estimate total contribution to that fishery. The variance of the total contribution was calculated by summing the variances for each period. The contributions by stock to each fishery were added to produce the total contribution by stock to the Eastside age-2.2 sockeye salmon harvest. The variance of the total contribution by stock was calculated as the sum of the variances for each fishery. Construction of Age-2.3 Models. A four-way linear discriminant model was built from scale measurements of age-2.3 sockeye salmon entering Kvichak, Naknek, Egegik, and Ugashik Rivers. Scale samples weighted by run strength through time were used to build the discriminant models. Frequency distribution plots of the total size of all freshwater growth zones for Kvichak, Naknek, and Ugashik River stocks were similar (Figure 4). Therefore, all Kvichak, Naknek, and Ugashik River samples were pooled. A two-way linear discriminant model was built using scales from Egegik and Kvichak/Naknek/Ugashik Rivers pooled. Classification of Age-2.3 Sockeye Salmon. The two-way age-2.3 model was used to classify catches that were estimated to contain a large component of age-2.2 Egegik River stocks. These included catches on and before July 9 in Naknek-Kvichak District and all catches in Egegik District. Procedures for the age-2.3 analysis were the same as those used for the
age-2.2 analysis. # Separation of Kvichak/Naknek/Ugashik Age-2.3 Catch The age-2.3 sockeye salmon catch proportion classified to the Kvichak/Naknek/Ugashik group was separated to each river $(\hat{S}_{12.3})$ based on age composition of the escapements: $$\hat{S}_{i2.3} = \hat{S}_{p2.3} \frac{\hat{E}_{i2.3}}{\hat{E}_{p2.3}}, \tag{4}$$ where: $\hat{S}_{p2.3}$ = estimated proportion of age-2.3 sockeye salmon of Kvichak/Naknek/Ugashik pooled stocks in the catch, $\hat{\mathbf{E}}_{i2.3}$ = estimated number of age-2.3 sockeye salmon in stock *i* escapement, and $\dot{E}_{p2.3}$ = estimated number of age-2.3 sockeye salmon in Kvichak, Naknek, and Ugashik River pooled escapement. # Other Age Group Stock Composition Estimation Estimates of stock composition for sockeye salmon of other ages harvested in Naknek-Kvichak District on and before July 9 and in Egegik District were based on scale pattern estimates for age-2.2 and -2.3 sockeye salmon, and the ratio of age-2.2 and -2.3 sockeye salmon to sockeye salmon of other age groups within the respective escapements: $$\hat{S}_{ij} = \frac{\hat{S}_{i(2.2,2.3)} \frac{\hat{T}_{ij}}{\hat{T}_{i(2.2,2.3)}}}{\sum_{i=1}^{n} \left(\hat{S}_{i(2.2,2.3)} \frac{\hat{T}_{ij}}{\hat{T}_{i(2.2,2.3)}} \right)},$$ (5) where: \hat{T}_{ij} = estimated proportion of age j sockeye salmon in stock i escapement, $$\hat{S}_{i(2.2,2.3)} = \frac{\hat{C}_{i2.2} + \hat{C}_{i2.3}}{\hat{C}_{2.2} + \hat{C}_{2.3}}, \tag{6}$$ $$\hat{T}_{i(2.2,2.3)} = \frac{\hat{E}_{i2.2} + \hat{E}_{i2.3}}{\hat{E}_{i}}. \tag{7}$$ $T_{i(2.2,2.3)}$ = estimated proportion of combined age-2.2 and age-2.3 sockeye salmon in stock *i* escapement, $\hat{S}_{i(2.2,2.3)}$ = estimated proportion of combined age-2.2 and age-2.3 sockeye salmon of stock i in the catch, $C_{i2,2}$ = estimated number of age-2.2 sockeye salmon of stock i in the catch, $C_{i2.3}$ = estimated number of age-2.3 sockeye salmon of stock i in the catch, $\dot{C}_{2,2}$ = estimated number of age-2.2 sockeye salmon in the catch, $C_{2.3}$ = estimated number of age-2.3 sockeye salmon in the catch, $\dot{E}_{i2.2}$ = estimated number of age-2.2 sockeye salmon in stock i escapement, $\dot{E}_{i2.3}$ = estimated number of age-2.3 sockeye salmon in stock i escapement, and \dot{E}_i = estimated number of stock *i* escapement. Estimates of stock composition for sockeye salmon of other ages harvested in Naknek-Kvichak District after July 9 and in Ugashik District were based on scale pattern estimates for age-2.2 sockeye salmon, and the ratio of age-2.2 sockeye salmon to sockeye salmon of other age groups within the respective escapements: $$\hat{S}_{ij} = \frac{\hat{S}_{i2.2} \frac{\hat{T}_{ij}}{\hat{T}_{i2.2}}}{\sum_{i=1}^{n} \left(\hat{S}_{i2.2} \frac{\hat{T}_{ij}}{\hat{T}_{i2.2}} \right)},$$ (8) where: T_{ii} = estimated proportion of age j sockeye salmon in stock i escapement, $$\hat{S}_{i2.2} = \frac{\hat{C}_{i2.2}}{\hat{C}_{2.2}},\tag{9}$$ $$\hat{T}_{i2.2} = \frac{\hat{E}_{i2.2}}{\hat{E}_i} . \tag{10}$$ $\hat{T}_{i2,2}$ = estimated proportion of age-2.2 sockeye salmon of stock i in the escapement, $\hat{S}_{i2,2}$ = estimated proportion of age-2.2 sockeye salmon of stock *i* in the catch, $\hat{C}_{i2.2}$ = estimated number of age-2.2 sockeye salmon of stock i in the catch, $C_{2,2}$ = estimated number of age-2.2 sockeye salmon in the catch, $\dot{E}_{i2.2}$ = estimated number of age-2.2 sockeye salmon in stock i escapement, $\dot{\mathbf{E}}_i$ = estimated number of stock *i* escapement. #### Run Size Estimation Sockeye salmon run size to each river was estimated by adding estimates of catch by stock to escapement estimates. For each river, we computed the percentage (1) harvested within the natal district, (2) harvested outside the natal district, and (3) that escaped. Finally, run size estimates from scale pattern analysis were compared with estimates from the standard method. #### **RESULTS** ## Catch and Escapement Eastside commercial fishermen harvested an estimated 34,685,634 sockeye salmon in 1993 (Table 1). This was 59% greater than the 1983-92 average catch of 20.5 million. The 21,600,858 sockeye salmon caught in Egegik District accounted for 62.3% of the Eastside harvest; commercial harvests in Naknek-Kvichak were 8,907,876 or 25.7% of the Eastside harvest and in Ugashik were 4,176,900 or 12.0%. Sockeye salmon escapements in 1993 were estimated to be 4,025,166 in Kvichak River, 1,535,658 in Naknek River, 1,516,980 in Egegik River, and 1,389,534 in Ugashik River (Table 2). # Age Composition Four age groups made up 98.6% of the Eastside sockeye salmon catch: age-1.2 was 6.5%, age-1.3 was 10.1%, age-2.2 was 40.1%, and age-2.3 was 41.9% (Table 3). Naknek-Kvichak District catch was 31.1% age-2.3, 30.3% age-2.2, and 21.6% age-1.3. Egegik District catch was 46.5% age-2.3 and 44.6% age-2.2. Ugashik District catch was 40.9% age-2.3 and 38.6% age-2.2. Age composition of sockeye salmon escapements also varied among runs (Table 4). Kvichak River escapement was 44.1% age-2.2, 24.2% age-1.3, and 22.6% age-1.2 sockeye salmon. Naknek River escapement was 56.5% age-2.3 and 20.2% age-1.3. Egegik River escapement was 49.5% age-2.3 and 40.8% age-2.2. Ugashik River escapement was 36.3% age-2.3, 26.7% age-2.2, and 20.4% age-1.2. # Classification Models ## Age 2.2 Scale characteristics which differed the most among age-2.2 sockeye salmon stocks were variables 64, 27, and 36 (Tables 5, 6; Figure 5). In general, freshwater growth was greatest in Egegik River, followed by Kvichak, Naknek, and Ugashik Rivers. Estimated overall classification accuracy for the four-way model was 70.1% (Table 6). Individual classification accuracy was highest for Ugashik River (74.6%), followed by Egegik (72.5%), Kvichak (68.2%), and Naknek (65.1%) River. The range of overall classification accuracies were 73.1% to 80.0% for three-way models, while the two-way model had an overall classification accuracy of 95.0%. # Age 2.3 Scale variables were similar between Kvichak, Naknek, and Ugashik samples; the four-way model could not accurately differentiate between these stocks (Tables 7, 8; Figure 4). Egegik stocks were distinct (Figure 6). Therefore, Kvichak, Naknek, and Ugashik samples were pooled and compared to Egegik River samples in a two-way model. Scale measurements that provided the greatest discrimination among age-2.3 sockeye salmon in the two-way model were variables 65, 57, and 63 (Tables 7, 8). Estimated overall classification accuracy for the two-way model was 85.5% (Table 8). Individual classification accuracies were equal for Egegik and Kvichak/Naknek/Ugashik combined (85.5%) ## Estimates of Catch Composition #### Age 2.2 Of the estimated 2,700,419 age-2.2 sockeye salmon caught in Naknek-Kvichak District, 80.3% originated within the district and 19.7% from outside the district (Figure 7). Of the estimated 9,629,905 age-2.2 sockeye salmon caught in Egegik District, 87.7% originated from Egegik River and 12.3% were produced outside the district (Figure 8). The estimated catch of age-2.2 sockeye salmon in Ugashik District was 1,609,938; 68.5% originated in Ugashik River and 31.5% from outside the district (Figure 9). The 90% confidence intervals by group are presented in Tables 9 and 10. #### Age 2.3 Of the estimated 2,772,120 age-2.3 sockeye salmon caught in Naknek-Kvichak District, 82.7% originated within the district and 17.3% from outside the district (Figure 10). Of the estimated 10,051,082 age-2.3 sockeye salmon caught in Egegik District, 92.6% originated from Egegik River and 7.4% were produced outside the district (Figure 11). The estimated catch of age-2.3 sockeye salmon in Ugashik District was 1,709,640; 54.7% originated in Ugashik River and 45.3% from stocks outside the district (Figure 12). The 90% confidence intervals by group for Naknek/Kvichak District through July 9 and Egegik District are presented in Tables 11 and 12. ## All Ages The Naknek-Kvichak District harvest was composed of an estimated 3,949,371 sockeye salmon from Kvichak River, 3,720,655 from Naknek River, 801,900 from Egegik River, and 435,950 from Ugashik River (Table 13). Estimated stock contributions to the Naknek-Kvichak District total catch were 44.3% for Kvichak, 41.8% for Naknek, 9.0% for Egegik, and 4.9% for Ugashik Rivers (Figure 13). Of the sockeye salmon caught in Egegik District, an estimated 18,912,281 were from Egegik River, 1,568,619 from Ugashik River, 812,284 from Naknek River, and 307,674 from Kvichak River (Table 14). Estimated stock contributions to the Egegik District total catch were 87.6% Egegik, 7.3% Ugashik, 3.8% Naknek, and 1.4% Kvichak Rivers (Figure 14). The Ugashik District catch was composed of an estimated 2,642,166 sockeye salmon from Ugashik River, 1,002,942 from Naknek River, 521,475 from Egegik River, and 10,317 from Kvichak River (Table 15). Estimated stock contribution to the total Ugashik District sockeye salmon catch were 63.3% from Ugashik River, 24.0% from Naknek River, 12.5% from Egegik River, and 0.2% from Kvichak River (Figure 15). #### Harvest Distribution Of the estimated 4,267,362 Kvichak River sockeye salmon harvested in 1993, 92.6% were taken in Naknek-Kvichak, 7.2% in Egegik, and 0.2% in Ugashik Districts (Table 16). Of the estimated 5,535,881 Naknek River sockeye salmon harvested, 67.2% were taken in Naknek-Kvichak, 18.1% in Ugashik, and 14.7% in Egegik Districts. Of the estimated 20,235,656 Egegik River sockeye salmon harvested, 93.5% were taken in Egegik, 4.0% in Naknek-Kvichak, and 2.6% in Ugashik Districts. Of the estimated 4,646,735 Ugashik River sockeye salmon harvested, 56.9% were taken in Ugashik, 33.8% in Egegik, and 9.4% in Naknek-Kvichak Districts. An estimated 2,133,217 sockeye salmon destined for Kvichak and Naknek Rivers were harvested outside their natal district, whereas Naknek-Kvichak District fishermen caught 1,237,850 sockeye salmon bound for other districts. Therefore, Naknek-Kvichak District fishermen realized a net loss of 895,367
sockeye salmon. The number of Egegik River sockeye salmon harvested in other districts was 1,323,375, whereas fishermen in Egegik District caught 2,688,577 sockeye salmon bound for other districts. Therefore, Egegik District fishermen realized a net gain of 1,365,202 sockeye salmon. An estimated 2,004,569 Ugashik River sockeye salmon were harvested outside Ugashik District, whereas 1,534,734 sockeye salmon from other rivers were caught in Ugashik District. Therefore, Ugashik District fishermen had a net loss of 469,835 sockeye salmon. #### Run By River System #### Run Distribution The 1993 Kvichak River run was estimated to be 8,292,528 sockeye salmon: 48.6% escaped, 47.6% were harvested in Naknek-Kvichak District, and 3.8% were harvested in other districts (Tables 17, 18; Figure 16). The 1993 Naknek River run was estimated to be 7,071,539 sockeye salmon: 21.7% escaped, 52.6% were harvested in Naknek-Kvichak District, and 25.7% were harvested in other districts (Figure 17). The 1993 Egegik River run was estimated to be 21,752,636 sockeye salmon: 7.0% escaped, 86.9% were harvested in Egegik District, and 6.1% were harvested in other districts (Figure 18). The 1993 Ugashik River run was estimated to be 6,036,269: 23.0% escaped, 43.8% were harvested in Ugashik District, and 33.2% were harvested in other districts (Figure 19). ## **Exploitation Rates** The Ugashik River run was exploited outside the natal district at a 33.2% rate, slightly higher than Naknek River's run (25.7%). Egegik (6.1%) and Kvichak (3.8%) Rivers were exploited outside their natal district at much lower rates. Total exploitation rates based on harvests inside and outside the natal district were 51.5% for Kvichak River, 77.0% for Ugashik River, 78.3% for Naknek River, and 93.0% for Egegik River (Tables 17, 18; Figures 16-19). # Comparison of Run Estimates Run estimates based on the standard method cannot be directly compared to those based on scale pattern analysis because Branch River stock was not included in linear discriminant models. Therefore, standard run estimates were adjusted so that Naknek-Kvichak District catch was only divided between Kvichak and Naknek Rivers. Naknek River had the greatest difference in estimated run size between the two methods (Table 19). The standard method estimate for the Naknek River run was 2,299,711 sockeye salmon less than that obtained from scale pattern analysis. Estimates for Egegik River differed by 1,408,179, the standard method estimate being higher. Estimates for Kvichak River differed by 1,289,277, the standard method estimate again being higher. The standard method estimate of run size for Ugashik River was 397,745 lower than that obtained from scale pattern analysis. Harvests of stocks outside their natal districts in 1993 resulted in the standard method overestimating runs to Kvichak (13.5%) and Egegik Rivers (6.1%) and under-estimating runs to Naknek (-48.2%) and Ugashik (-7.1%) Rivers. #### LITERATURE CITED - ADF&G (Alaska Department of Fish and Game). 1994. Annual management report, 1993, Bristol Bay Area. Division of Commercial Fisheries Management and Development, Regional Information Report 2A94-02, Anchorage. - Bernard, D. R. 1983. Variance and bias of catch allocations that use the age composition of escapements. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 227, Juneau. - Box, G. E. P. 1949. A general distribution theory for a class of likelihood criteria. Biometrika 36:317-346. - Bue, B. G., and four coauthors. 1986. Stock composition of sockeye salmon catches sampled within east side Bristol Bay fishing districts, 1986. Alaska Department of Fish and Game, Division of Commercial Fisheries, Bristol Bay Data Report 86-10, Anchorage. - Burns, P. N. 1991. Separation of sockeye salmon stocks in east side Bristol Bay commercial harvests, 1983-1989. Masters thesis, University of Alaska Fairbanks. - Cook, R., and G. Lord. 1978. Identification of stocks of Bristol Bay sockeye salmon by evaluating scale patterns with a polynomial discriminant method. Fisheries Bulletin 76(2): 415-423. - Cross, B. A., and B. L. Stratton. 1989. Origins of sockeye salmon in east side Bristol Bay fisheries in 1987 based on linear discriminant function analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 89-13, Juneau. - Cross, B. A., and B. L. Stratton. 1991. Origins of sockeye salmon in east side Bristol Bay fisheries in 1988 based on linear discriminant function analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 91-09, Juneau. - Cross, B. A., B. L. Stratton, and J. D. Miller. 1992. Origins of sockeye salmon in east side Bristol Bay fisheries in 1989 based on linear discriminant function analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 92-03, Juneau. - Enslein, K., A. Ralston, and H. Wilf, editors. 1977. Statistical methods for digital computers. John Wiley & Sons, Inc. New York. # **LITERATURE CITED** (Continued) - Fisher, R. 1936. The use of multiple measurements in taxonomic problems. Annual Eugenics 7:179-188. - Fried, S., and H. Yuen. 1985. Stock composition of sockeye salmon catches sampled within east side Bristol Bay fishing districts: a preliminary study using scale pattern characteristics to identify stocks. Alaska Department of Fish and Game, Division of Commercial Fisheries, Bristol Bay Area Data Report 85-14, Anchorage. - Goodman, L. 1960. On the exact variance of products. Journal American Statistical Association 55:708-713. - Koo, T. S. Y. 1962. Age designation in salmon. Pages 37-48 in T. S. Y. Koo, editor. Studies of Alaska red salmon. University of Washington Publications in Fisheries, New Series, Volume I, Seattle, Washington. - Lachenbruch, P. 1967. An almost unbiased method of obtaining confidence intervals for the probability of misclassification in discriminant analysis. Biometrics 23(4):639-645. - Pella, J., and T. Robertson. 1979. Assessment of composition of stock mixtures. Fishery Bulletin 77(2):387-398. - Ryan, P., and M. Christie. 1976. Scale reading equipment. Fisheries and Marine Service, Canada, Technical Report PAC/T-75-8, Nanaimo, British Columbia. - Stratton, B. L. 1991. Abundance, age, sex, and size statistics for Pacific salmon in Bristol Bay, 1990. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 91-15, Juneau. - Stratton, B. L., and D. L. Crawford. 1992. Abundance, age, sex, and size statistics for Pacific salmon in Bristol Bay, 1991. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 92-17, Juneau. - Stratton, B. L., and D. L. Crawford. 1994. Abundance, age, sex, and size statistics for Pacific salmon in Bristol Bay, 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Technical Fishery Report 94-16, Juneau. # LITERATURE CITED (Continued) - Stratton, B. L., and J. D. Miller. 1993. Origins of sockeye salmon in 1991 east side Bristol Bay fisheries based on linear discriminant function analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 93-09, Juneau. - Stratton, B. L., and J. D. Miller. 1994. Origins of sockeye salmon in 1992 east side Bristol Bay fisheries based on linear discriminant function analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Technical Fishery Report 94-10, Juneau. - Stratton, B. L., J. D. Miller, and B. A. Cross. 1992. Origins of sockeye salmon in east side Bristol Bay fisheries in 1990 based on linear discriminant function analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 92-16, Juneau. - Straty, R. R. 1975. Migratory routes of adult sockeye salmon, *Oncorhynchus nerka*, in the Eastern Bering Sea and Bristol Bay. National Oceanic and Atmospheric Administration Technical Report NMFS SSRF-690, Seattle, Washington. Table 1. Sockeye salmon commercial catch by district and date for the Eastside of Bristol Bay, 1993. | | Cat | | | | |-----------|------------------|--------------------|------------------|------------| | Date | Naknek-Kvichak | Egegik | Ugashik | Total | | 6/02-6/11 | 60 | | 325 | 385 | | 6/14-6/18 | 44,431 | 186 ^b | 27,263 | 71,880 | | 6/19 | | 948 | | 94 | | 6/20 | | 527,865 | | 527,865 | | 6/21 | 280,565 | 327,067 | 17,165 | 624,797 | | 6/22 | 357,515 | 761,534 | 49,046 | 1,168,095 | | 6/23 | 147,897 | | 14,064 | 161,961 | | 6/24 | | 917,581 | 249 | 917,830 | | 6/25 | 75,283 | 1,126,966 | 879 ^a | 1,203,128 | | 6/26 | 352,596 | 1,254,426 | 679° | 1,607,701 | | 6/27 | 452,388 | 899,989 | 351 ^b | 1,352,728 | | 6/28 | 658,674 | 1,389,528 | 404 ^b | 2,048,606 | | 6/29 | 461,921 | 1,059,168 | 531° | 1,521,620 | | 6/30 | 514,692 | 762,165 | 73,616 | 1,350,473 | | 7/01 | 532,866 | 855,430 | 1,664 | 1,389,960 | | 7/02 | 1,915,623 | 2 , 703,970 | 983° | 4,620,576 | | 7/03 | | 1,914,630 | 275,315 | 2,189,945 | | 7/04 | 585,599 | 1,196,757 | 681° | 1,783,037 | | 7/05 | 525,117 | 1,093,049 | 275,017 | 1,893,183 | | 7/06 | 331 , 728 | 965,146 | 402,789 | 1,699,663 | | 7/07 | 496,094 | 935,691 | 498,764 | 1,930,549 | | 7/08 | 280,640 | 757,079 | 698,546 | 1,736,265 | | 7/09 | 296,008 | 596,558 | 427,669 | 1,320,235 | | 7/10 | . 116,256 | 384,853 | 365,465 | 866,574 | | 7/11 | 163,577 | 250,188 | 244,447 | 658,212 | | 7/12 | 73,412 | 208,862 | 204,148 | 486,422 | | 7/13 | 113,814 | 142,150 | 123,789 | 379,753 | | 7/14 | 52,525 | 132,723 | 131,700 | 316,948 | | 7/15 | | 88,506 | 95,791 | 184,297 | | 7/16 | 14,491 | 57,335 | 58,347 | 130,173 | | 7/17 | 8,362 | 54,372 | 14,959 | 77,693 | | 7/18 | 7,464 | 69,095 | | 76,559 | | 7/19 |
8,856 | 48,861 | 37,252 | 94,969 | | 7/20 | 12,068 | 46,198 | 28,139 | 86,405 | | 7/21 | 8,582 | 15,652 | 33,046 | 57,280 | | 7/22 | 7,248 | 20,685 | 27,096 | 55,029 | | 7/23 | 2,463 | 5,417 | 5,390 | 13,270 | | 7/26-7/30 | 8,032 | 25,063 | 33,816 | 66,911 | | 8/02-8/06 | 1,029 | 4,264 | 6,516 | 11,809 | | 8/09-8/13 | | 1,473 | 829 | 2,302 | | 8/16-9/08 | | 282 | 170 | 452 | | Total | 8,907,876 | 21,600,858 | 4,176,900 | 34,685,634 | | Percent | 25.7 | 62.3 | 12.0 | 100.0 | Blanks indicate a district was closed. ADF&G test-fish catch Table 3. Sockeye salmon age composition by brood year in the commercial catch for the Eastside of Bristol Bay, 1993. | | | | 1990 | | 1989 | | 1 | 1988 | | 1987 | | 198 | 36 | | |--------------------|----------------|--------------------|---------------------------|---------------|-------------------|--------------|-------------------|--------------------|----------------|--------------------|----------------|----------------|---------------|---------------------| | District | Sample
Size | | 1.1 | 0.3 | 1.2 | 2.1 | 1.3 | 2.2 | 1.4 | 2.3 | 3.2 | 2.4 | 3.3 | Total | | Naknek-
Kvichak | 6,044 | Numbers
Percent | 3,953
0.0 ^a | 5,481
0.1 | 1,408,428
15.8 | 1,780
0.0 | 1,921,848
21.6 | 2,700,419
30.3 | 57,994
0.6 | 2,772,120
31.1 | 5,970
0.1 | 23,819 | 6,064
0.1 | 8,907,876
100.0 | | Egegik | 4,702 | Numbers
Percent | | 6,141
0.0 | 467,614
2.2 | | 1,149,266
5.3 | 9,629,905
44.6 | 86,283
0.4 | 10,051,083
46.5 | 106,349
0.5 | 75,104
0.4 | 29,114
0.1 | 21,600,858
100.0 | | Ugashik | 3,464 | Numbers
Percent | | 4,810
0.1 | 363,966
8.7 | 2,347
0.0 | 446,722
10.7 | 1,609,938
38.6 | 19,937
0.5 | 1,709,640
40.9 | 9,061
0.2 | 10,479
0.3 | | 4,176,900
100.0 | | Total | 14,210 | Numbers
Percent | 3,953
0.0 | 16,432
0.0 | | 4,127
0.0 | 3,517,836
10.1 | 13,940,262
40.1 | 164,214
0.5 | 14,532,843
41.9 | 121,380
0.4 | 109,402
0.4 | 35,178
0.1 | 34,685,634
100.0 | a Represented <0.1%</pre> Table 4. Sockeye salmon age composition by brood year in the escapement for the Eastside of Bristol Bay, 1993. | | | | 1 | 990 | | 1989 | | | 1988 | 1 | | 1987 | | 198 | 36 | | |---------|----------------|--------------------|--------------|--------------|---------------|-----------------|---------------|-------------------------|-----------------|-------------------|---------------|-----------------|--------------|---------------|--------------|---------------------| | River | Sample
Size | | 0.2 | 1.1 | 0.3 | 1.2 | 2.1 | 0.4 | 1.3 | 2.2 | 1.4 | 2.3 | 3.2 | 2.4 | 3.3 | Total | | Kvichak | 3,244 | Numbers
Percent | 5,310
0.1 | 4,138
0.1 | 46,934
1.2 | 910,608
22.6 | 115,822 | 896
0.0 ^a | 973,736
24.2 | 1,776,665
44.1 | 2,592
0.1 | 188,465
4.7 | | | | 4,025,166
100.00 | | Naknek | 2,479 | Numbers
Percent | | | | 95,857
6.2 | 4,388
0.3 | - | 310,303
20.2 | 209,405
13.6 | 36,054
2.4 | 867,410
56.5 | | 12,241
0.8 | | 1,535,658
100.00 | | Egegik | 3,011 | Numbers
Percent | | | | 14,832
1.0 | 33,519
2.2 | | 72,584
4.8 | 618,346
40.8 | 10,392
0.7 | 752,404
49.5 | 9,308
0.6 | 3,093
0.2 | 2,502
0.2 | 1,516,980
100.00 | | Ugashik | 2,040 | Numbers
Percent | 185
0.0 | 1,112
0.1 | 1,482
0.1 | 284,029
20.4 | 11,521
0.8 | | 211,738
15.2 | 370,434
26.7 | 3,366
0.2 | 502,283
36.3 | | 3,384
0.2 | | 1,389,534
100.00 | a Represented <0.1% Table 5. Mean and standard error of age-2.2 scale variables used to construct linear discriminant functions for the Eastside of Bristol Bay, 1993. | Vari | able | Kvi | chak | Nak | nek | Ege | gik | Ugashik | | | |----------|--------------------------|----------|-------|--------|-------|--------|-------|---------|-------|--| | Number | Name | Mean* | SE | Mean | SE | Mean | SE | Mean | SE | | | irst Fre | shwater Annular Zone | | | | | , | | | | | | 5 | CO-C6 | 99.07 | 0.617 | 89.67 | 0.696 | 99.75 | 0.537 | 84.56 | 0.546 | | | 8 | C2-C6 | 48.14 | 0.399 | 43.28 | 0.452 | 49.07 | 0.390 | 38.86 | 0.334 | | | 10 | C4-C6 | 22.19 | 0.249 | 19.50 | 0.237 | 22.62 | 0.215 | 17.69 | 0.19 | | | 12 | C(NC-4)-E1FW | 34.35 | 0.338 | 31.83 | 0.268 | 34.69 | 0.301 | 31.01 | 0.26 | | | 16 | CO-C2/S1FW | 0.41 | 0.005 | 0.39 | 0.005 | 0.34 | 0.004 | 0.43 | 0.004 | | | 21 | C2-C6/S1FW | 0.38 | 0.003 | 0.36 | 0.003 | 0.32 | 0.003 | 0.36 | 0.00 | | | 25 | C(NC-4)-E1FW/S1FW | 0.28 | 0.004 | 0.27 | 0.005 | 0.23 | 0.003 | 0.29 | 0.003 | | | 27 | S1FW/NC1FW | 13.63 | 0.088 | 12.21 | 0.073 | 13.05 | 0.067 | 11.90 | 0.07 | | | 28 | NC 1ST 3/4 | 5.17 | 0.081 | 5.75 | 0.090 | 7.04 | 0.117 | 5.09 | 0.06 | | | econd Fr | eshwater Annular Zone | | | | | | | | | | | 36 | E1FW-C8 | 91.78 | 0.557 | 84.07 | 0.629 | 94.16 | 0.540 | 92.15 | 0.608 | | | 42 | C(NC-4)-E2FW | 34.55 | 0.350 | 32.54 | 0.319 | 36.13 | 0.324 | 35.09 | 0.34 | | | 48 | E1FW-C6/S2FW | 0.70 | 0.005 | 0.68 | 0.007 | 0.64 | 0.006 | 0.70 | 0.00 | | | 51 | C2-C6/S2FW | 0.46 | 0.004 | 0.44 | 0.005 | 0.43 | 0.004 | 0.47 | 0.00 | | | 56 | C(NC-4)-E2FW/S2FW | 0.15 | 0.002 | 0.16 | 0.003 | 0.14 | 0.002 | 0.15 | 0.00 | | | 57 | S2FW/NC2FW | 10.78 | 0.064 | 9.94 | 0.065 | 10.97 | 0.060 | 10.84 | 0.06 | | | reshwate | er and Plus Growth Zones | <u>3</u> | | | | | | | | | | 64 | S1FW+S2FW | 233.89 | 1.432 | 221.60 | 1.581 | 270.11 | 1.873 | 213.32 | 1.37 | | | 65 | NC1+NC2+NCPG | 23.39 | 0.127 | 21.65 | 0.133 | 23.50 | 0.131 | 20.79 | 0.10 | | | 66 | S1F+S2F+SPGZ | 245.49 | 1.425 | 239.19 | 1.498 | 281.55 | 1.732 | 235.53 | 1.25 | | | 67 | S1FW/S1FW+S2FW+SPGZ | 0.52 | .004 | 0.51 | 0.005 | 0.55 | 0.004 | 0.46 | 0.00 | | | First M | larine Annular Zone | | | | | | | | | | | 80 | C3-C15 | 273.74 | 1.241 | 273.62 | 1.423 | 264.19 | 1.304 | 268.53 | 1.18 | | | 82 | C6-C12 | 139.43 | 0.806 | 139.90 | 0.950 | 133.58 | 0.859 | 135.84 | 0.75 | | | 84 | C9-C15 | 128.17 | 0.775 | 130.47 | 0.951 | 120.42 | 0.732 | 128.37 | 0.71 | | Scale images projected at 100x magnification and measured at 0.01 in; therefore, variable means are in 0.0001 in. Table 6. (p 2 of 3). | Actual Group
Of Origin | Sample
Size | Classified Group of Origin (%) | | | | | | | |------------------------------|-------------------|--------------------------------|----------------------|-----------------------------|--|--|--|--| | | | <u>Kvichak</u> | <u>Naknek</u> | <u>Ugashik</u> | | | | | | Kvichak
Naknek
Ugashik | 199
173
200 | 75.9
15.6
10.5 | 14.1
65.3
11.5 | 10.1
19.1
<u>78.0</u> | | | | | Mean classification accuracy = 73.1%Variables used: 5, 65, 64, 57, 82, 8, 27, 56, 10 Box's Test of Variance-Covariance Equality F-statistic = 1.94df = 90, 857, 617P = 0.000 | Actual Group
Of Origin | Sample
Size | Classified | Group of Or | igin (%) | |---------------------------|----------------|---------------------|--------------------|--------------------| | Kvichak | 195 | <u>Kvichak</u> 72.9 | Egegik
13.8 | Ugashik
13.3 | | Egegik
Ugashik | 200
197 | 16.0
11.7 | $\frac{80.0}{1.0}$ | 4.0
<u>87.3</u> | Mean classification accuracy = 80.0% Variables used: 64, 5, 36, 66, 27, 8, 84 Box's Test of Variance-Covariance Equality F-statistic = 4.10 df = 56, 990,149 P = 0.000 Table 6. (p 3 of 3). | Actual Group
Of Origin | Sample
Size | Classified | Group of Or | igin (%) | |-----------------------------|-------------------|----------------------|---------------------------|---------------------| | | • | <u>Naknek</u> | <u>Egegik</u> | <u>Ugashik</u> | | Naknek
Egegik
Ugashik | 169
200
197 | 73.3
12.5
16.8 | 8.9
<u>81.5</u>
2.5 | 17.8
6.0
80.7 | Mean classification accuracy = 78.5% Variables used: 64, 36, 80, 21 Box's Test of Variance-Covariance Equality F-statistic = 3.96df = 20, 1,085,858 P = 0.002 | Actual Group
Of Origin | Sample
Size | Classified Group of | Origin (%) | |---------------------------|----------------|---------------------|--------------------| | | • | <u>Egegik</u> | <u>Ugashik</u> | | Egegik
Ugashik | 200
197 | 94.5
4.6 | 5.5
<u>95.4</u> | Mean classification accuracy = 95.0% Variables used: 36, 27, 16, 84, 48, 25, 12 Box's Test of Variance-Covariance Equality F-statistic = 5.05df = 28, 543,422 P = 0.000 The equality of the variance-covariance matrices tested with a procedure described by Box (1949). Table 7. Mean and standard error of age-2.3 scale variables used to construct linear discriminant functions for the Eastside of Bristol Bay, 1993. | Vari | able | Kvi | Kvichak | | knek | Ege | gik | Uga | shik | |------------------|--------------------------|----------|---------|--------|-------|--------|-------|--------|-------| | Number | Name | Mean* | SE | Mean | SE | Mean | SE | Mean | SE | | First Fre | shwater Annular Zone | | | | | **** | | | | | 2 | S1FW | 137.11 | 1.638 | 126.52 | 1.302 | 155.55 | 1.740 | 126.82 | 0.993 | | 6 | C0-C8 | 119.56 | 0.890 | 109.02 | 0.692 | 117.47 | 0.677 | 110.44 | 0.650 | | 10 | C4-C6 | 23.04 | 0.347 | 20.71 | 0.225 | 22.04 | 0.220 | 20.87 | 0.234 | | 19 | CO-C8/S1FW | 0.88 | 0.007 | 0.86 | 0.005 | 0.77 | 0.007 | 0.87 | 0.004 | | 27 | S1FW/NC1FW | 13.29 | 0.092 | 12.27 | 0.073 | 12.48 | 0.063 | 12.46 | 0.070 | | Second Fr | eshwater Annular Zone | | | | | | | | | | 35 | E1FW-C6 | 70.67 | 0.829 | 63.54 | 0.441 | 70.41 | 0.449 | 73.30 | 0.490 | | 40 | C4-C6 | 21.63 | 0.439 | 19.63 | 0.243 | 23.03 | 0.229 | 21.88 | 0.237 | | 41 | C4-C8 | 39.25 | 0.710 | 37.31 | 0.388 | 43.42 | 0.388 | 38.93 | 0.372 | | 56 | (C(NC-2)-E2FW)/S2FW | 0.16 | 0.004 | 0.16 | 0.003 | 0.15 | 0.002 | 0.16 | 0.002 | | 57 | S2FW/NC2FW | 10.54 | 0.117 | 9.66 | 0.059 | 10.64 | 0.060 | 10.79 | 0.073 | | Freshwate | er and Plus Growth Zones | <u>3</u> | | | | | | | | | 63 | NC1+NC2 | 19.45 | 0.164 | 19.98 | 0.129 | 22.68 | 0.123 | 19.72 | 0.108 | | 65 | NC1+NC2+NCPG | 20.48 | 0.165 | 21.12 | 0.117 | 23.82 | 0.114 | 20.96 |
0.110 | | 66 | S1FW+S2FW+SPGZ | 243.44 | 2.208 | 231.45 | 1.411 | 275.61 | 1.507 | 242.57 | 1.353 | | <u>First Mar</u> | ine Annular Zone | | | | | | | | | | 105 | s1oz/NC1oz | 18.32 | 0.122 | 18.69 | 0.090 | 18.22 | 0.088 | 18.37 | 0.078 | | Marine Zo | nes Combined | | | | | | | | | | 109 | s20Z | 299.80 | 4.875 | 301.23 | 3.015 | 279.62 | 2.786 | 299.26 | 2.891 | Scale images projected at 100x magnification and measured at 0.01 in; therefore, variable means are in 0.0001 in. Table 8. Classification matrices from discriminant analyses of age-2.3 sockeye salmon sampled from Kvichak, Naknek, Egegik, and Ugashik Rivers, 1993. | Actual Group
Of Origin | Sample
Size | Class | ified Grou | up of Orio | gin (%) | |--|-------------------------|-----------------------------|-----------------------------|----------------------------------|-----------------------------| | | | <u>Kvichak</u> | <u>Naknek</u> | <u>Egegik</u> | <u>Ugashik</u> | | Kvichak
Naknek
Egegik
Ugashik | 80
182
194
194 | 56.3
12.6
8.8
19.6 | 18.8
64.3
8.2
18.0 | 6.3
6.0
<u>74.2</u>
4.6 | 18.8
17.0
8.8
57.7 | Mean classification accuracy = 63.1%Variables used: 66, 35, 6, 105, 41, 2, 19, 109, 56Box's Test of Variance-Covariance Equality^a F-statistic = 6.70df = 135, 352, 864P = 0.009 | Actual Group
Of Origin | Sample
Size | Classified Group of Origin | | | |----------------------------------|----------------|----------------------------|---------------------|--| | | | Kvichak/Naknek/Ugashik | <u>Egegik</u> | | | Kvichak/Naknek/Ugashik
Egegik | 276
200 | 85.5
14.5 | 14.5
<u>85.5</u> | | Mean classification accuracy = 85.5% Variables used: 65, 57, 63, 109, 27, 10, 35, 40 Box's Test of Variance-Covariance Equality F-statistic = 2.52 df = 36, 619,906 P = 0.000 - The equality of the variance-covariance matrices tested with a procedure described by Box (1949). - ^b Kvichak, Naknek, and Ugashik Rivers combined. Table 9. Run composition estimates and 90% confidence intervals (C.I.) calculated from scale pattern analyses of age-2.2 sockeye salmon by fishery and date for the Eastside of Bristol Bay, 1993. | | | Kvichak | | Nai | Naknek | | Egegik | | Ugashik | | |----------|-----------|---------|-------------|---------|-------------|---------|-------------|---------|--------------|--| | District | Date | Percent | 90% C.I. | | | Naknek- | 6/09-6/23 | 72.2 | (50.7,93.7) | 1.9 | (0.0,16.7) | 25.9 | (8.8,43.0) | 0.0 | Trace* | | | Kvichak | 6/24-6/26 | 37.0 | (17.7,56.3) | 5.0 | (0.0.18.3) | 58.0 | (39.9,76.0) | 0.0 | Trace | | | | 6/27 | 62.8 | (31.4.94.4) | 28.9 | (0.0,58.6) | 2.7 | (0.0,19.9) | 5.6 | (0.0,25.0) | | | | 6/28-6/29 | 76.5 | (49.3, 100) | 11.6 | (0.0, 33.8) | 7.4 | (0.0,24.0) | 4.5 | (0.0,19.6) | | | | 6/30-7/01 | 56.5 | (31.0,81.9) | 18.7 | (0.0,40.4) | 20.1 | (2.1,38.1) | 4.7 | (0.0,19.1) | | | | 7/02 | 72.1 | (51.9,92.2) | 21.1 | (4.2, 38.1) | 6.8 | (0.0,19.6) | 0.0 | Trace | | | | 7/04-7/05 | 48.2 | (24.5,71.8) | 24.5 | (2.5,46.5) | 11.4 | (0.0, 26.4) | 15.9 | (0.0,32.8) | | | | 7/06-7/07 | 44.8 | (20.4,69.3) | 29.3 | (6.2,52.4) | 20.7 | (2.9, 38.4) | 5.2 | (0.0,20.1) | | | | 7/08-7/09 | 56.0 | (31.4,80.5) | 25.0 | (2.7,47.4) | 12.0 | (0.0, 27.8) | 7.0 | (0.0,22.1) | | | | 7/10-7/11 | 51.5 | (27.4,75.8) | 36.2 | (12.4,59.9) | 11.4 | (0.0, 27.1) | 0.9 | (0.0,15.0) | | | | 7/12-7/14 | 39.0 | (15.9,62.1) | 48.0 | (23.1,72.8) | 12.0 | (0.0, 27.6) | 1.0 | (0.0,16.0) | | | | 7/16-8/06 | 1.2 | (0.0,18.0) | 84.7 | (58.6,100) | 0.0 | Trace | 14.1 | (0.0,34.5) | | | Egegik | 6/17-6/21 | 15.6 | (0.0,34.1) | 0.0 | Trace | 83.3 | (66.0,100) | 1.1 | (0.0,9.7) | | | | 6/22-6/24 | 0.0 | Trace | 0.0 | Trace | 95.3 | (88.6,100) | 4.7 | (0.0, 11.4) | | | | 6/25-6/27 | 2.6 | (0.0,18.7) | 8.7 | (0.0,22.1) | 88.7 | (70.9,100) | 0.0 | Trace | | | | 6/28-6/29 | 0.0 | Trace | 0.0 | Trace | 100.0 | (89.6,100) | 0.0 | Trace | | | | 6/30-7/03 | 1.1 | (0.0,22.0) | 0.9 | (0.0,15.6) | 87.8 | (65.9,100) | 10.2 | (0.0,23.2) | | | | 7/04-7/06 | 0.0 | Trace | 0.0 | Trace | 79.4 | (71.2,87.6) | 20.6 | (12.4, 28.8) | | | | 7/07-7/08 | 0.0 | Trace | 5.4 | (0.0,20.6) | 90.1 | (75.5,100) | 4.5 | (0.0,14.9) | | | | 7/09-7/11 | 9.2 | (0.0,26.4) | 0.0 | Trace | 79.3 | (62.5,96.0) | 11.5 | (0.8,22.2) | | | | 7/12-8/26 | 0.0 | Trace | 5.2 | (0.0,20.4) | 87.6 | (72.8,100) | 7.2 | (0.0,18.2) | | | Ugashik | 6/09-6/30 | 0.0 | Trace | 8.2 | (0.0,23.9) | 52.4 | (37.7,67.2) | 39.4 | (23.6,55.1) | | | | 7/01-7/06 | 0.0 | Trace | 21.1 | (3.0, 39.2) | 16.6 | (5.7,27.6) | 62.3 | (44.8, 79.8) | | | | 7/07-7/08 | 0.0 | Trace | 14.0 | (0.0,31.5) | 17.2 | (6.3,28.1) | 68.8 | (51.3,86.1) | | | | 7/09 | 0.0 | Trace | 18.6 | (0.3,37.0) | 8.0 | (0.0, 16.9) | 73.4 | (55.7,91.0) | | | | 7/10-7/12 | 0.0 | Trace | 12.4 | (0.0, 29.9) | 20.9 | (9.1,32.6) | 66.7 | (49.1,84.3) | | | | 7/13-8/17 | 3.3 | (0.0,23.1) | 4.9 | (0.0,26.9) | 11.2 | (0.0, 24.3) | 80.6 | (55.7,100) | | Trace was recorded for systems that were originally included in the model used to classify the catch, the point estimates were zero, and the upper bounds of the 90% C.I. were greater than zero. Table 10. Estimated harvest of age-2.2 sockeye salmon and 90% confidence intervals (C.I.), Eastside of Bristol Bay, 1993. | District | | Percent | N mber | | 90% C.I. | | | |--------------------|---|--------------------------------------|--|--|--|--|--| | | River | | | Standard Error | Lower | Upper | | | Naknek-
Kvichak | Kvichak
Naknek
Egegik
Ugashik
Total | 59.9
20.4
14.9
4.8
100.0 | 1,616,649
551,715
402,885
129,170
2,700,419 | 103,848
82,023
63,837
45,870 | 1,393,491
375,531
265,786
30,664 | 1,839,435
727,753
539,916
227,639 | | | Egegik | Kvichak
Naknek
Egegik
Ugashik
Total | 1.8
2.2
87.7
8.3
100.0 | 173,067
209,637
8,448,201
799,001
9,629,905 | 262,251
198,483
349,904
181,324 | 0
0
7,696,860
409,679 | 736,140
635,805
9,199,412
1,188,319 | | | Ugashik | Kvichak
Naknek
Egegik
Ugashik
Total | 0.5
14.2
16.8
68.5
100.0 | 7,169
228,835
271,133
1,102,800
1,609,938 | 17,211
60,702
37,941
65,580 | 98,495
189,669
961,975 | 44,123
359,161
352,594
1,243,588 | | | Total
Eastside | Kvichak
Naknek
Egegik
Ugashik
Total | 12.9
7.1
65.4
14.6
100.0 | 1,796,885
990,187
9,122,219
2,030,971
13,940,262 | 282,064
217,437
354,922
192,390 | 1,191,077
523,254
8,360,068
1,617,853 | 2,402,313
1,456,970
9,884,169
2,444,010 | | Table 11. Run composition estimates and 90% confidence intervals (C.I.) calculated from scale pattern analyses of age-2.3 sockeye salmon by fishery and date, Naknek-Kvichak and Egegik Districts, 1993. | | | Kvichak/Na | knek/Ugashik ^a | Ege | egik | | |--------------------|---|--|---|---|--|--| | District | Date | Percent | 90% C.I. | Percent | 90% C.I. | | | Naknek-
Kvichak | 6/09-6/23
6/24-6/26
6/27
6/28-6/29
6/30-7/01
7/02
7/04-7/05
7/06-7/07
7/08-7/09 | 73.5
67.8
100.0
92.3
69.0
100.0
89.4
95.1
96.5 | (61.8,85.1)
(55.9,79.7)
(92.8,100)
(81.9,100)
(53.0,84.9)
(95.0,100)
(78.9,100)
(85.0,100)
(86.6,100) | 32.2
0.0
7.7
31.0
0.0
10.6
4.9 | (14.9,38.2)
(20.3,44.1)
Trace ^b
(0.0,18.1)
(15.1,47.0)
Trace
(0.0,21.1)
(0.0,15.0)
(0.0,13.4) | | | Egegik | 6/17-6/21
6/22-6/24
6/25-6/27
6/28-6/29
6/30-7/03
7/04-7/06
7/07-7/08
7/09-7/11
7/12-8/26 | 12.0
0.0
15.5
9.2
4.9
7.7
4.9
4.9
0.7 | (1.0,23.0)
Trace
(4.2,26.8)
(0.0,20.0)
(0.0,15.4)
(0.0,18.4)
(0.0,15.4)
(0.0,15.4)
(0.0,15.4) | 88.0
100.0
84.5
90.8
95.1
92.3
95.1
95.1
99.3 | (77.0,99.0)
(90.5,100)
(73.2,95.8)
(80.0,100)
(84.6,100)
(81.6,100)
(84.6,100)
(84.6,100)
(89.2,100) | | ^{*} Kvichak, Naknek, and Ugashik Rivers combined. ^b Trace was recorded for systems that were included in the model used to classify the catch, the point estimates were zero, and the upper bounds of the 90% C.I. was greater than zero. Table 12. Estimated harvest of age-2.3 sockeye salmon and 90% confidence intervals (C.I.), Naknek-Kvichak and Egegik Districts, 1993. | District | | er Percent | Number | | 90% C.I. | | | |---------------------|---------------------------------------|-----------------------|------------------------------------|--------------------|----------------------|------------------------|--| | | River | | | Standard Error | Lower | Upper | | | Naknek-ª
Kvichak | Egegik
Other ^b
Total | 12.7
87.3
100.0 | 321,261
2,207,506
2,528,767 | 60,285
81,002 | 221,914
2,075,041 | 420,397
2,341,732 | | | Egegik | Egegik
Other
Total | 92.6
7.4
100.0 | 9,304,107
746,975
10,051,082 | 267,051
257,219 | 8,865,258
327,223 | 9,744,502
1,174,095 | | June 9 through July 9 catches only. ^b Kvichak, Naknek, and Ugashik Rivers combined. 29 Table 13. Run composition estimates of sockeye salmon catch by age group and date, Naknek-Kvichak District,
1993. | | | | 1.2 | | 1.3 | ; | 2.2 | 1. | .4 | | 2.3 | 2. | 4 | 01 | her ^a | 1 | otal | |-----------------------------------|---|-------------------------------------|---|-------------------------------------|---|--------------------------------------|--|-------------------------------------|---------------------------------------|--------------------------------------|--|-------------------------------------|-----------------------------------|------------------------------------|---------------------------------|--------------------------------------|--| | Date | River | % | Number | * | Number | * | Number | % | Number | % | Number | * | Number | % | Number | % | Number | | 6/09 ^b
thru
6/23 | Kvichak
Naknek
Egegik
Ugashik
Total | 91.0
7.9
1.1
0.0
100.0 | 56,534
4,906
682
0
62,122 | 75.9
19.9
4.2
0.0
100.0 | 168,696
44,316
9,318
0
222,330 | 72.2
1.9
25.9
0.0
100.0 | 156,981
4,131
56,313
0
217,425 | 6.5
74.3
19.2
0.0
100.0 | 318
3,643
944
0
4,905 | 36.2
37.3
26.5
0.0
100.0 | 115,399
118,906
84,477
0
318,782 | 0.0
81.5
18.5
0.0
100.0 | 0
3,995
909
0
4,904 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 60.0
21.7
18.4
0.0
100.0 | 497,928
179,897
152,643
0
830,468 | | 6/24 ^c
thru
6/26 | Kvichak
Naknek
Egegik
Ugashik
Total | 70.3
26.3
3.4
0.0
100.0 | 21,805
8,172
1,052
0
31,029 | 42.5
48.2
9.4
0.0
100.0 | 29,815
33,824
6,585
0
70,224 | 37.0
5.0
58.0
0.0
100.0 | 41,694
5,634
65,358
0
112,686 | 1.6
79.4
19.0
0.0
100.0 | 26
1,297
311
0
1,634 | 10.8
57.0
32.2
0.0
100.0 | 22,753
120,083
67,836
0
210,672 | 0.0
82.6
17.4
0.0
100.0 | 0
1,350
284
0
1,634 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 27.1
39.8
33.1
0.0
100.0 | 116,093
170,360
141,427
0
427,879 | | 6/27 | Kvichak
Naknek
Egegik
Ugashik
Total | 58.0
32.3
0.1
9.6
100.0 | 33,505
18,699
29
5,573
57,805 | 35.6
60.1
0.1
4.1
100.0 | 34,889
58,944
138
4,046
98,017 | 62.8
28.9
2.7
5.6
100.0 | 59,188
27,238
2,545
5,278
94,248 | 1.3
97.5
0.3
0.9
100.0 | 83
6,125
18
58
6,283 | 5.0
89.3
0.0
5.7
100.0 | 9,676
172,814
0
11,031
193,521 | 0.0
97.1
0.2
2.7
100.0 | 0
2,440
6
68
2,514 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 30.4
63.3
0.6
5.8
100.0 | 137,341
286,259
2,735
26,053
452,388 | | 6/28 ^c
thru
6/29 | Kvichak
Maknek
Egogik
Ugashik
Total | 73.7
16.6
0.3
9.4
100.0 | 76,910
17,354
347
9,773
104,384 | 55.8
38.1
1.2
4.9
100.0 | 125,046
85,416
2,579
11,078
224,119 | 76.5
11.6
7.4
4.5
100.0 | 248,956
37,750
24,082
14,644
325,433 | 3.4
1.6 | 473
14,102
525
250
15,350 | 12.0
71.3
7.7
9.0
100.0 | 53,420
317,405
34,278
40,065
445,169 | 0.0
92.1
3.0
4.8
100.0 | 0
5,658
185
297
6,140 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 45.0
42.6
5.5
6.8
100.0 | 504,806
477,685
61,995
76,109
1,120,595 | | 6/30 ^c
thru
7/01 | Kvichak
Naknek
Egegik
Ugashik
Total | 78.4
13.4
1.2
7.0
100.0 | 130,224
22,268
1,963
11,593
166,028 | 60.7
31.4
4.1
3.8
100.0 | 100,746
52,151
6,879
6,252
166,028 | 56.5
18.7
20.1
4.7
100.0 | 254,616
84,271
90,580
21,180
450,647 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 4.6
59.5
31.0
4.9
100.0 | 11,820
152,885
79,654
12,591
256,949 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 96.0
0.0
0.0
4.0
100.0 | 7,590
0
0
316
7,906 | 48.2
29.7
17.1
5.0
100.0 | 504,996
311,575
179,056
51,932
1,047,558 | Table 13. (p 2 of 3). | | | | 1.2 | | 1.3 | ; | 2.2 | 1. | .4 | | 2.3 | 2. | .4 | Ot | :her ^a | τ | otal | |-----------------------------------|---|--------------------------------------|---|--------------------------------------|--|---------------------------------------|--|------------------------------------|-------------------------------------|--------------------------------------|--|------------------------------------|----------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--| | Dat e | River | * | Number | % | Number | % | Number | % | Number | * | Number | * | Number | * | Number | % | Number | | 7/02 | Kvichak
Naknek
Egegik
Ugashik
Total | 84.0
15.9
0.2
0.0
100.0 | 369,318
69,803
763
0
439,884 | 63.2
36.2
0.6
0.0
100.0 | 363,354
207,898
3,436
0
574,688 | 72.1
21.1
6.8
0.0
100.0 | 401,560
117,516
37,873
0
556,949 | 3.8
94.3
1.9
0.0
100.0 | 268
6,691
136
0
7,095 | 8.0
92.0
0.0
0.0
100.0 | 26,393
303,520
0
0
329,913 | 0.0
98.2
1.8
0.0
100.0 | 0
3,485
62
0
3,547 | 0.0
0.0
100.0
0.0
100.0 | . 0 | 37.0
2.4
0.0 | 1,160,893
708,912
45,817
0
1,915,623 | | 7/04 ^c
thru
7/05 | Kvichak
Naknek
Egegik
Ugashik
Total | 57.5
18.9
0.5
23.0
100.0 | 113,086
37,136
1,073
45,305
196,600 | 43.2
42.9
1.9
12.1
100.0 | 77,425
76,969
3,361
21,624
179,379 | 48.2
24.5
11.4
15.9
100.0 | 185,372
94,224
43,843
61,150
384,589 | 2.1
89.7
4.8
3.4
100.0 | 30
1,287
69
49
1,435 | 3.6
70.8
10.6
15.0
100.0 | 12,399
243,841
36,507
51,661
344,408 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 0.0
0.0
100.0
0.0
100.0 | 0
0
4,305
0
4,305 | 35.0
40.8
8.0
16.2
100.0 | 388,311
453,457
89,159
179,790
1,110,716 | | 7/06 ^c
thru
7/07 | Kvichak
Naknek
Egegik
Ugashik
Total | 58.4
31.3
0.7
9.5
100.0 | 110,104
59,092
1,405
17,996
188,597 | 35.8
58.1
2.1
4.1
100.0 | 65,040
105,672
3,797
7,411
181,921 | 44.8
29.3
20.7
5.2
100.0 | 89,725
58,682
41,458
10,415
200,280 | 1.3
93.6
4.1
0.9
100.0 | 44
3,125
138
30
3,338 | 3.4
86.7
4.9
5.0
100.0 | 8,455
215,605
12,185
12,434
248,679 | 0.0
93.7
3.6
2.7
100.0 | 0
3,128
122
89
3,338 | 0.0
0.0
100.0
0.0
100.0 | 0
0
1,669
0
1,669 | 33.0
53.8
7.3
5.8
100.0 | 273,369
445,304
60,774
48,375
827,822 | | 7/08 ^c
thru
7/09 | Kvichak
Naknek
Egegik
Ugashik
Total | 66.3
22.2
0.4
11.1
100.0 | 61,003
20,424
361
10,173
91,961 | 46.4
47.0
1.3
5.4
100.0 | 48,656
49,313
1,318
5,657
104,944 | 56.0
25.0
12.0
7.0
100.0 | 105,418
47,062
22,590
13,177
188,247 | 2.1
93.3
3.1
1.5
100.0 | 160
7,070
233
111
7,574 | 4.8
84.0
3.5
7.7
100.0 | 8,672
151,768
6,324
13,912
180,676 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 58.8
3.1
36.1
1.9
100.0 | 1,910
102
1,171
63
3,246 | 39.2
47.8
5.5
7.5
100.0 | 225,821
275,739
31,996
43,093
576,648 | | 7/10 ^c
thru
7/11 | Kvichak
Naknek
Egegik
Ugashik
Total | 60.1
37.7
0.6
1.6
100.0 | 24,897
15,630
258
651
41,436 | 33.7
64.1
1.6
0.6
100.0 | 14,696
27,929
697
268
43,589 | 51.5
36.2
11.4
0.9
100.0 | 48,778
34,286
10,797
852
94,714 | 1.2
95.8
2.9
0.1
100.0 | 44
3,608
111
5
3,767 | 3.2
87.9
8.1
0.7
100.0 | 3,052
83,768
7,749
682
95,251 | 0.0
97.0
2.6
0.4
100.0 | 0
522
14
2
538 | 0.0
0.0
100.0
0.0
100.0 | 0
0
538
0
538 | 32.7
59.2
7.2
0.9
100.0 | 91,466
165,743
20,164
2,460
279,833 | Table 13. (p 3 of 3). | | | | 1.2 | 1 | 1.3 | | 2.2 | 1. | .4 | ; | 2.3 | 2. | .4 | Ot | her ^a | Т | otal | |-----------------------------------|---|-------------------------------------|---|-------------------------------------|---|-------------------------------------|--|------------------------------------|---|------------------------------------|---|------------------------------------|-----------------|-------------------------------------|--|-------------------------------------|---| | Date | River | % | Number | % | Number | * | Number | % | Number | % | Number | % | Number | * | Number | % | Number | | 7/12 ^c
thru
7/14 | Kvichak
Naknek
Egegik
Ugashik
Total |
46.5
51.1
0.7
1.8
100.0 | 10,581
11,631
152
406
22,770 | 22.6
75.3
1.5
0.6
100.0 | 10,605
35,291
699
284
46,879 | 39.0
48.0
12.0
1.0 | 24,203
29,788
7,447
621
62,059 | 0.7
96.9
2.4
0.1
100.0 | 30
4,325
106
5
4,465 | 1.9
90.8
6.7
0.6
100.0 | 1,915
92,044
6,760
628
101,347 | 0.0
97.6
2.1
0.3
100.0 | 9
1 | 39.9
5.9
53.9
0.3
100.0 | 712
106
962
5
1,785 | 20.0
72.4
6.7
0.8
100.0 | 48,047
173,621
16,134
1,949
239,751 | | 7/16 ^d
thru
8/06 | Kvichak
Naknek
Egegik
Ugashik
Total | 1.2
77.2
0.0
21.5
100.0 | 71
4,489
0
1,252
5,812 | 0.5
93.5
0.0
6.0
100.0 | 48
9,098
0
584
9,730 | 1.2
84.7
0.0
14.1
100.0 | 158
11,131
0
1,853
13,142 | 0.0
99.1
0.0
0.9
100.0 | 0
2,129
0
19
2,148 | 0.0
94.8
0.0
5.2
100.0 | 16
44,322
0
2,415
46,753 | 0.0
97.5
0.0
2.5
100.0 | 739
0
19 | 3.4
77.4
0.0
19.1
100.0 | 9
195
0
48
252 | 0.4
91.7
0.0
7.9
100.0 | 302
72,103
0
6,190
78,595 | | Total | Kvichak
Naknek
Egegik
Ugashik
Total | 20.6
0.6
7.3 | 1,008,038
289,603
8,065
102,722
1,408,428 | 40.9
2.0
3.0 | 1,039,017
786,821
38,806
57,204
1,921,848 | 20.4
14.9
4.8 | 402,885 | 92.1
4.5
0.9 | 1,476
53,401
2,590
527
57,994 | 12.1
5.2 | 273,970
2,016,961
335,771
145,418
2,772,120 | 6.7
2.0 | 21,751
1,591 | 1.7
52.4
1.9 | 10,222
403
12,191
432
23,248 | 41.8
9.0
4.9 | 3,949,371
3,720,655
801,900
435,950
8,907,876 | a Other includes ages-1.1, -0.3, -2.1, -3.2, and -3.3. ^b Scale samples were collected on 22 June. Stock composition estimates calculated for this date were applied to 9 through 23 June catches. Naknek Section only openings. Reduced Naknek Section only openings occurred on 16 and 18 July. Scale samples collected on these dates were used to produce stock composition estimates that were applied to 16 July through 6 August catches. 32 Table 14. Run composition estimates of sockeye salmon catch by age group and date, Egegik District, 1993. | | | 1 | .2 | | 1.3 | | 2.2 | 1. | .4 | | 2.3 | 3 | 3.2 | Ot | her | Ţ | otal | |-----------------------------------|---|--------------------------------------|--|--------------------------------------|--|-------------------------------------|---|-------------------------------------|--|-------------------------------------|---|-------------------------------------|---------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--| | Date | River | × | Number | * | Number | * | Number | % | Number | * | Number | × | Number | x | Number | * | Number | | 6/17 ^b
thru
6/21 | Kvichak
Naknek
Egegik
Ugashik
Total | 65.2
0.0
14.1
20.7
100.0 | 2,372
0
514
753
3,640 | 45.2
0.0
44.8
10.0
100.0 | 27,947
0
27,733
6,187
61,867 | 15.6
0.0
83.3
1.1
100.0 | 38,889
0
207,655
2,742
249,286 | 1.8
0.0
95.8
2.4
100.0 | 33
0
1,744
43
1,820 | 6.3
0.0
88.0
5.7
100.0 | 32,785
0
457,955
29,663
520,403 | 0.0
0.0
100.0
0.0
100.0 | 0
0
3,640
0
3,640 | 0.0
0.0
98.1
1.9
100.0 | 0
0
14,275
281
14,556 | 11.9
0.0
83.4
4.6
100.0 | 102,026
0
713,517
39,669
855,212 | | 6/22
thru
6/24 | Kvichak
Naknek
Egegik
Ugashik
Total | 0.0
0.0
65.1
34.9
100.0 | 0
0
15,617
8,371
23,988 | 0.0
0.0
92.5
7.5
100.0 | 0
0
99,794
8,149
107,943 | 0.0
0.0
95.3
4.7
100.0 | 0
0
542,924
26,776
569,700 | 0.0
0.0
99.1
0.9
100.0 | | 0.0
0.0
100.0
0.0
100.0 | 0
0
959,493
0
959,493 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 0.0
0.0
98.5
1.5
100.0 | 0
0
11,816
178
11,994 | 0.0
0.0
97.4
2.6
100.0 | 0
0
1,635,586
43,529
1,679,115 | | 6/25
thru
6/27 | Kvichak
Naknek
Egegik
Ugashik
Total | 19.9
43.9
36.2
0.0
100.0 | 6,005
13,237
10,918
0
30,160 | 6.3
41.7
52.0
0.0
100.0 | 10,938
72,984
91,005
0
174,926 | 0.0 | 31,523
105,481
1,075,418
0
1,212,422 | 60.5
0.0 | | 0.1
15.4
84.5
0.0
100.0 | 1,798
276,818
1,518,905
0
1,797,521 | 0.0
0.0
100.0
0.0
100.0 | 0
0
12,064
0
12,064 | 0.0
42.6
57.4
0.0
100.0 | 0
10,272
13,856
0
24,128 | 1.5
15.0
83.5
0.0
100.0 | 50,305
490,666
2,740,410
0
3,281,381 | | 6/28
thru
6/29 | Kvichak
Naknek
Egegik
Ugashik
Total | 2.8
18.4
57.0
21.8
100.0 | 44,855
17,133 | 0.8
16.7
78.0
4.5
100.0 | 1,287
25,441
119,096
6,930
152,754 | 0.0
0.0
100.0
0.0
100.0 | 0
0
999,845
0
999,845 | 0.0
14.7
84.7
0.5
100.0 | 0
0
0
0 | 0.2
6.8
90.8
2.2
100.0 | 2,426
82,469
1,101,202
26,681
1,212,777 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 0.0
16.2
82.0
1.8
100.0 | 0
750
3,797
83
4,629 | 0.2
5.0
92.7
2.1
100.0 | 50,827 | | 6/30
thru
7/03 | Kvichak
Naknek
Egegik
Ugashik
Total | 2.3
27.4
63.2 | 11,180
3,701
43,333
99,818
158,032 | 3.9
3.9
68.3
24.0
100.0 | 12,173
12,200
215,922
75,770
316,065 | 10.2 | 31,290
25,601
2,497,541
290,147
2,844,580 | 92.1
3.6 | 35
1,540
33,584
1,310
36,469 | 0.0
1.0
95.2
3.8
100.0 | 0
28,324
2,696,468
107,632
2,832,424 | 0.0
0.0
100.0
0.0
100.0 | 0
0
24,313
0
24,313 | 0.0
4.4
84.5
11.1
100.0 | 1,073
20,539
2,700
24,312 | 0.9
1.2
88.7
9.3
100.0 | 577,378 | Table 14. (p 2 of 2). | | | | 1.2 | | 1.3 | | 2.2 | 1. | .4 | | 2.3 | 3 | 3.2 | 01 | ther" | | Total | |-----------------------|---|-----------------------|---|--------------------------------------|--|-----------------------|------------------------------|---------------------|--|------------------------------------|---|-----------------------|-----------------------------------|-----------------------|--|-----------------------|---| | Date | River | % | Number | 7/04
thru
7/06 | Kvichak
Naknek
Egegik | 0.0 | | 0.0
0.0
56.5 | 0 0 | 0.0 | 0
0
1,194,692 | 0.0
0.0
0.0 | 0 | 0.0
0.0
92.3 | 0
0
1,286,756 | 0.0
0.0
100.0 | 0 0 | 0.0
0.0
38.8 | 0 0 | 0.0
0.0
80.8 | 0 0 | | 1706 | Ugashik
Total | 83.5 | 107,681
128,969 | 43.5
100.0 | 117,933
90,875
208,808 | 20.6 | | 0.0 | 0
0
0 | 7.7
100.0 | 107,346
1,394,102 | 0.0 | 6,141
0
6,141 | 61.2 | 4,765
7,717
12,282 | 19.2
100.0 | 2,631,576
623,376
3,254,952 | | 7/07
thru
7/08 | Kvichak
Naknek
Egegik | 0.0
17.3
40.7 | 1,628
3,824 | 0.0
19.6
69.5 | 0
11,027
39,156 | 0.0
5.4
90.1 | 0
51,872
865,492 | 0.0
18.3
80.3 | 0
1,722
7,534 | 0.0
3.8
95.1 | 0
24,018
601,081 | 0.0
0.0
100.0 | • | 0.0
9.9
87.9 | 0
1,235
11,002 | 0.0
5.4
91.0 | 91,502
1,540,605 | | | Ugashik
Total | 41.9
100.0 | • | 10.9
100.0 | 6,139
56,322 | 4.5
100.0 | 43,227
960,591 | 1.4 | 131
9,387 | 1.1 | 6,953
632,051 | 0.0
100.0 | 0
12,516 | 2.2
100.0 | | 3.6
100.0 | 60,663
1,692,770 | | 7/09
thru | Kvichak
Naknek | 42.8
0.0 | | 32.0
0.0 | 11,601
0 | 9.2
0.0 | 71,365
0 | 0.0 | 0 | 0.3
0.0 | 1,082
0 | 0.0 | 0 | 0.0 | 0 | 7.7
0.0 | 94,735
0 | | 7/11 | Egegik
Ugashik
Total | 13.2
43.9
100.0 | 3,300
10,962 | 45.2
22.9
100.0 | 16,395
8,295
36,291 | 79.3
11.5
100.0 | 615,132
89,206
775,702 | 0.0
0.0
0.0 | 0 | 95.1
4.6
100.0 | 342,963
16,589
360,634 | 100.0
0.0
100.0 | 31,754
0 | 100.0
0.0
100.0 | 2,268
0
2,268 | 82.2
10.2
100.0 | 1,011,812
125,052
1,231,599 | | 7/12°
thru
8/26 | Kvichak
Naknek
Egegik | 0.0
10.8
36.6 | 0
1,062
3,587 | 0.0
13.8
70.7 | 0
4,749
24,242 | 0.0
5.2
87.6 | 0
26,683
449,501 | 0.0
13.4
84.5 | 0
329
2,071 | 0.0
0.5
99.3 | 0
1,708
339,285 | 0.0
0.0
100.0 | 0
0
15,921 | 0.0
0.0
100.0 | 0
0
3,674 | 0.0
3.7
91.0 | 0
34,531
838,281 | | | Ugashik
Total | 52.5
100.0 | 5,147
9,797 | 15.5
100.0 | 5,299
34,290 | 7.2
100.0 | 36,945
513,129 | 2.1
100.0 | 50
2,450 | 0.2
100.0 | 683
341,677 | 0.0
100.0 | 0
15,921 | 0.0
100.0 | 0
3,674 | 5.2
100.0 | 48,125
920,938 | | Total | Kvichak
Naknek
Egegik
Ugashik
Total | 7.3
31.5
54.3 | 32,463
34,114
147,236
253,802
467,614 | 5.6
11.0
65.4
18.1
100.0 |
63,945
126,401
751,276
207,643
1,149,266 | 8.3 | 209,637
8,448,201 | 80.1
1.8 | 109
15,466
69,120
1,588
86,283 | 0.4
4.1
92.6
2.9
100.0 | 38,090
413,338
9,304,107
295,547
10,051,082 | 0.0 | 0
0
106,349
0
106,349 | | 0
13 330
85,992
11 037
110,359 | 7.3 | 307,674
812,284
18,912,281
1,568,619
21,600,858 | ^{*} Other includes age-0.3, -2.4, and -3.3. ^b Scale samples were collected on 20 and 21 June. Stock composition estimates calculated for that date were applied to 17 through 21 June catches. ^c Scale samples were collected on 12, 13, and 14 July. Stock composition estimates calculated for these dates were applied to 12 July through 26 August catches. ယ Table 15. Run composition estimates of sockeye salmon catch by age group and date, Ugashik District, 1993. | | | • | 1.2 | 1 | 1.3 | ; | 2.2 | 1. | 4 | ; | 2.3 | 2. | 4 | Ot | her ^a | To | otal | |-----------------------------------|---|-------------------------------------|-------------------------|--------------------------------------|---------------------------------------|--------------------------------------|---|--------------------------------------|-----------------------------------|--------------------------------------|--|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|---| | Date | System | % | Number | % | Number | * | Number | % | Number | % | Number | × | Number | * | Number | * | Number | | 6/09 ^b
thru
6/30 | Kvichak
Naknek
Egegik
Ugashik
Total | 0.0
10.7
3.6
85.8
100.0 | • | 0.0
29.8
15.1
55.2
100.0 | • | 0.0
8.2
52.4
39.4
100.0 | 0
3,791
24,224
18,214
46,229 | 0.0
53.3
33.2
13.5
100.0 | 0
729
455
185
1,369 | 0.0
22.5
42.2
35.3
100.0 | 0
18,699
35,102
29,411
83,212 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 0.0
0.0
0.0
100.0
100.0 | 0
0
0
1,027
1,027 | 0.0
18.7
35.3
46.0
100.0 | 0
34,598
65,127
84,847
184,572 | | 7/01
thru
7/06 | Kvichak
Naknek
Egegik
Ugashik
Total | | 24,039 | 0.0
45.4
2.8
51.7
100.0 | 3,862 | 0.0
21.1
16.6
62.3
100.0 | 0
63,580
50,020
187,727
301,327 | 0.0
81.1
6.2
12.6
100.0 | 0
4,864
374
758
5,996 | 0.0
45.5
10.5
44.0
100.0 | 0
166,448
38,467
160,874
365,789 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 0.0
0.0
0.0
100.0
100.0 | 0
0
0
2,998
2,998 | 0.0
33.6
9.8
56.6
100.0 | 0
320,907
93,714
541,828
956,449 | | 7/07
thru
7/08 | Kvichak
Naknek
Egegik
Ugashik
Total | 0.0
10.8
0.7
88.5
100.0 | 10,030
646
82,558 | 0.0
33.4
3.3
63.3
100.0 | 4,308 | 0.0
14.0
17.2
68.8
100.0 | 0
64,805
79,618
318,471
462,894 | 0.0
72.5
8.7
18.8
100.0 | 0
3,557
427
923
4,907 | 0.0
33.7
12.2
54.2
100.0 | 0
167,999
60,630
270,251
498,880 | 0.0
53.4
5.6
41.0
100.0 | 0
2,619
275
2,012
4,907 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 0.0
24.5
12.2
63.3
100.0 | 0
293,278
145,904
758,128
1,197,310 | | 7/09 | Kvichak
Naknek
Egegik
Ugashik
Total | 0.0
13.1
0.3
86.6
100.0 | 2,056
46
13,592 | 0.0
39.1
1.3
59.5
100.0 | 0
6,754
230
10,280
17,264 | 0.0
18.6
8.0
73.4
100.0 | 0
41,451
17,829
163,577
222,857 | 0.0
0.0
0.0
0.0 | 0
0
0
0 | 0.0
41.4
5.2
53.4
100.0 | 0
67,175
8,487
86,774
162,436 | 0.0
60.5
2.2
37.3
100.0 | 0
949
35
585
1,569 | 0.0
1.3
81.4
17.4
100.0 | 0
98
6,388
1,362
7,848 | 0.0
27.7
7.7
64.6
100.0 | 0
118,483
33,015
276,171
427,669 | | 7/10
thru
7/12 | Kvichak
Naknek
Egegik
Ugashik
Total | 0.0
9.9
0.9
89.2
100.0 | 5,261
465
47,399 | 0.0
31.2
4.2
64.7
100.0 | 3,446
53,555 | 0.0
12.4
20.9
66.7
100.0 | 0
44,563
75,110
239,704
359,376 | 0.0
69.0
11.4
19.6
100.0 | 0
1,078
177
306
1,562 | 0.0
30.7
15.2
54.1
100.0 | 0
95,980
47,521
168,999
312,500 | 0.0
50.4
7.3
42.4
100.0 | 0
787
113
662
1,562 | 0.0
3.7
66.3
29.9
100.0 | 0
117
1,562
935
3,124 | 0.0
21.3
15.8
62.8
100.0 | 0
173,597
128,905
511,559
814,060 | Table 15. (p 2 of 2). | | | 1 | 1.2 | 1 | 1.3 | ; | 2.2 | 1. | 4 | | 2.3 | 2.4 | | Ot | :her ^a | Total | | |-----------------------------------|---|------------------------------------|--------|-------------------------------------|--|-------------------------------------|---|--------------|--|--------------------------------------|---|-------------------------------------|--------------|-------------------------------------|--------------------------------------|-------------------------------------|--| | Date | System | * | Number × | Number | | 7/13 ^C
thru
8/17 | Kvichak
Naknek
Egegik
Ugashik
Total | 2.6
3.4
0.4
93.6
100.0 | • | 3.2
12.9
2.3
81.6
100.0 | | 3.3
4.9
11.2
80.6
100.0 | 7,169
10,645
24,333
175,108
217,255 | | 17
2,910
649
2,527
6,103 | 0.2
14.1
9.5
76.1
100.0 | 699
40,551
27,228
218,345
286,823 | 0.0
26.5
5.2
68.3
100.0 | 1,666 | 0.0
0.0
100.0
0.0
100.0 | 0
0
1,221
0
1,221 | 1.7
10.4
9.2
78.7
100.0 | 10,317
62,080
54,810
469,633
596,840 | | Total | Kvichak
Naknek
Egegik
Ugashik
Total | | 44,997 | 34.5
3.9
61.3 | 1,525
153,899
17,495
273,802
446,722 | | 7,169
228,835
271,133
1,102,800
1,609,938 | 10.4
23.6 | 17
13,139
2,082
4,700
19,937 | 0.0
32.6
12.7
54.7
100.0 | 699
556,853
217,435
934,653
1,709,640 | 0.0
47.7
5.3
47.0
100.0 | 5,003
550 | 0.0
1.3
59.7
39.0
100.0 | 0
216
9,681
6,321
16,218 | 12.5
63.3 | 1,002,942 | a Other includes ages-0.3, -2.1 and -3.2. Scale samples were collected on 30 June. Stock composition estimates calculated for that date were applied to 9 through 30 June catches. ^c Scale samples were collected on 13 July. Stock composition estimates calculated for that date were applied to 13 July through 17 August catches. Figure 2. Commercial catch of sockeye salmon in Naknek-Kvichak, Egegik, and Ugashik Districts from 1978 through 1993. Figure 3. Age-2.2 sockeye salmon scale showing the growth zones measured to generate variables to build linear discriminant functions. Figure 4. Total size of all freshwater growth zones (S1FW+S2FW+SPGZ) for age-2.3 sockeye salmon escapement scales, Kvichak, Naknek, and Ugashik Rivers, 1993. Figure 6. Total number of circuli in all freshwater growth zones (N1FW+N2FW+NPGZ) for age-2.3 sockeye salmon escapement scales, Egegik and Kvichak/Naknek/Ugashik (Other) Rivers combined, 1993. Figure 7. Stock composition estimates for 1993 Naknek-Kvichak District age-2.2 sockeye salmon catch in percent and numbers through time. Figure 8. Stock composition estimates for 1993 Egegik District age-2.2 sockeye salmon catch in percent and numbers through time. Figure 9. Stock composition estimates for 1993 Ugashik District age-2.2 sockeye salmon catch in percent and numbers through time. Figure 10. Stock composition estimates for 1993 Naknek-Kvichak District age-2.3 sockeye salmon catch in percent and numbers through time. Figure 11. Stock composition estimates for 1993 Egegik District age-2.3 sockeye salmon catch in percent and numbers through time. Figure 12. Stock composition estimates for 1993 Ugashik District age-2.3 sockeye salmon catch in percent and numbers through time. Figure 13. Stock composition estimates for 1993 Naknek-Kvichak District total sockeye salmon catch in percent and numbers through time. Figure 14. Stock composition estimates for 1993 Egegik District total sockeye salmon catch in percent and numbers through time. Figure 15. Stock composition estimates for 1993 Ugashik District total sockeye salmon catch in percent and numbers through time. Figure 16. Estimated 1993 Kvichak River sockeye salmon run, escapement, in-district catch, and other district catch for ages 2.2 and 2.3, and all ages combined. Figure 17. Estimated 1993 Naknek River sockeye salmon run, escapement, in-district catch, and other district catch for ages 2.2 and 2.3, and all ages combined. Figure 18. Estimated 1993 Egegik River sockeye salmon run, escapement, in-district catch, and other district catch for ages 2.2 and 2.3, and all ages combined. Figure 19. Estimated 1993 Ugashik River sockeye salmon run, escapement, in-district catch, and other district catch for ages 2.2 and 2.3, and all ages combined. Appendix A.1. Scale variables screened for linear discriminant function analysis of age-2.2 and -2.3 sockeye salmon for the Eastside of Bristol Bay, 1993. | Variable
Number | Variable
Name | Zone | |--------------------|------------------------|---| |
 | | First Freshwater Annular Zone | | 1 | NC1FW | Number of circuli first
freshwater | | 2 | S1FW | Size (width) of first freshwater | | 3 (16) | c0-c2 | Distance, scale focus (CO) to circulus 2 (C2) | | 4 (17) | C0-C4 | Distance, scale focus to circulus 4 | | 5 (18) | C0-C6 | Distance, scale focus to circulus 6 | | 6 (19) | C0-C8 | Distance, scale focus to circulus 8 | | 7 (20) | C2-C4 | Distance, circulus 2 to circulus 4 | | 8 (21) | C2-C6 | Distance, circulus 2 to circulus 6 | | 9 (22) | C2-C8 | Distance, circulus 2 to circulus 8 | | 10 (23) | C4-C6 | Distance, circulus 4 to circulus 6 | | 11 (24) | C4-C8 | Distance, circulus 4 to circulus 8 | | 12 (25) | C(NC-4)-E1FW | Distance, circulus (number circuli first freshwater | | 47 (2() | 0410 23 54511 | minus 2) to end first freshwater | | 13 (26) | C(NC-2)-E1FW | Distance, circulus (number circuli first freshwater | | 47 | 02 54511 | minus 4) to end first freshwater | | 14 | C2-E1FW | Distance, circulus 2 to end first freshwater | | 15 | C4-E1FW | Distance, circulus 4 to end first freshwater | | 16 thru | CO-C2/S1FW | Relative widths, (variables 3-13)/S1FW | | 26
27 | C(NC-2)-E1FW/S1FW | Average interval between circuli in first freshwater | | | S1FW/NC1FW | Number of circuli in first 3/4 of first freshwater | | 28
29 | NC 1ST 3/4
MAX DIST | Maximum distance between 2 consecutive circuli in | | 29 | MAX DIST | first freshwater | | 30 | MAX DIST/S1FW | Relative width, (variable 29)/S1FW | | 30 | MAX DIST/STIM | Returite width, (variable 27), on a | | | · | Second Freshwater Annular Zone | | 31 | NC2FW | Number of circuli second freshwater | | 32 | S2FW | Size (width) of second freshwater | | 33 (46) | E1FW-C2 | Distance, end of first freshwater to circulus 2 (C2) | | | | in second freshwater | | 34 (47) | E1FW-C4 | Distance, end of first freshwater to circulus 4 | | 35 (48) | E1FW-C6 | Distance, end of first freshwater to circulus 6 | | 36 (49) | E1FW-C8 | Distance, end of first freshwater to circulus 8 | | 37 (50) | C2-C4 | Distance, circulus 2 to circulus 4 | | 38 (51) | C2-C6 | Distance, circulus 2 to circulus 6 | | 39 (52) | C2-C8 | Distance, circulus 2 to circulus 8 | | 40 (53) | C4-C6 | Distance, circulus 4 to circulus 6 | | 41 (54) | C4-C8 | Distance, circulus 4 to circulus 8 | | 42 (55) | C(NC-4)-E2FW | Distance, circulus (number circuli second freshwater | | | | minus 4) to end second freshwater | | 43 (56) | C(NC-2)-E2FW | Distance, circulus (number circuli second freshwater | | | | minus 2) to end second freshwater | | 44 | C2-E2FW | Distance, circulus 2 to end second freshwater | | 45 | C4-E2FW | Distance, circulus 4 to end second freshwater | | 46 thru | E1FW-C2/S2FW | Relative widths, (variables 33-43)/S2FW | | 56 | C(NC-2)-E2FW/S2FW | | | 57 | S2FW/NC2FW | Average interval between circuli in second freshwater | | 58 | NC 1ST 3/4 | Number of circuli in first 3/4 of second freshwater | | F0 | MAX DIST | Maximum distance between 2 consecutive circuli in | | 59 . | nuot Die. | | | 60 | MAX DIST/S2FW | second freshwater
Relative width, (variable 59)/S2FW | Appendix A.1. (p 2 of 2). | Variable
Number | Variable
Name | Zone | |--------------------|---------------------|---| | | | Plus Growth Zone | | 61
62 | NCPG
SPGZ | Number of circuli in plus growth
Size (width) plus growth zone | | | | Freshwater and Plus Growth Zones | | 63 | NC1FW + NC2FW | Total number of circuli first and second freshwater | | 64 | S1FW + S2FW | Total size (width) of first and second freshwater | | 65 | NC1FW+NC2FW+NCPG | Total number of circuli first and second freshwater | | | | and plus growth | | 66 | S1FW+S2FW+SPGZ | Total size (width) first and second freshwater and | | | | plus growth | | 67 | | Relative width, (variable 2)/S1FW+S2FW+SPGZ | | 68 | | Relative width, (variable 62)/S1FW+S2FW+SPGZ | | 69 | S2FW/S1FW+S2FW+SPGZ | Relative width, (variable 32)/S1FW+S2FW+SPGZ | | | | First Marine Annular Zone | | 70 | NC10Z | Number of circuli in first ocean zone | | 70
71 | \$10Z | Size (width) first ocean zone | | 72 (90) | EFW-C3 | Distance, end of freshwater growth to circulus 3 | | 73 (91) | EFW-C6 | Distance, end of freshwater growth to circulus 6 | | 74 (92) | EFW-C9 | Distance, end of freshwater growth to circulus 9 | | 75 (93) | EFW-C12 | Distance, end of freshwater growth to circulus 12 | | 76 (94) | EFW-C15 | Distance, end of freshwater growth to circulus 15 | | 77 (95) | C3-C6 | Distance, circulus 3 to circulus 6 | | 78 (96) | C3-C9 | Distance, circulus 3 to circulus 9 | | 79 (97) | C3-C12 | Distance, circulus 3 to circulus 12 | | 80 (98) | C3-C15 | Distance, circulus 3 to circulus 15 | | 81 (99) | C6-C9 | Distance, circulus 6 to circulus 9 | | 82 (100) | C6-C12 | Distance, circulus 6 to circulus 12 | | 83 (101) | C6-C15 | Distance, circulus 6 to circulus 15 | | 84 (102) | C9-C15 | Distance, circulus 9 to circulus 15 | | 85 (103) | C(NC-6)-E10Z | Distance, circulus (number circuli first ocean minus | | | | 6) to end first ocean | | 86 (104) | C(NC-3)-E130Z | Distance, circulus (number circuli first ocean minus | | | | 3) to end first ocean | | 87 | C3-E10Z | Distance, circulus 3 to end of first ocean | | 88 | C9-E10Z | Distance, circulus 9 to end of first ocean | | 89 | C15-E10Z | Distance, circulus 15 to end of first ocean | | 90 thru | EFW-C3/S10Z | Relative widths, (variables 72-86)/S10Z | | 104 | C(NC-3)-E130Z/S10Z | Avenue interval between sincelli in finch assem | | 105 | S10Z/NC10Z | Average interval between circuli in first ocean | | 106
107 | NC 1ST 1/2 | Number of circuli in first 1/2 of first ocean | | 107 | MAX DIST | Maximum distance between 2 consecutive circuli in first ocean | | 108 | MAX DIST/S10Z | Relative width, (variable 107)/S10Z | | | | Second Marine Annular Zone | | 109 | \$20Z | Size (width) of second ocean zone | The Alaska Department of Fish and Game administers all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood or disability. For information on alternative formats available for this and other department publications, please contact the department ADA Coordinator at (voice) 907-465-4120, (TDD) 907-465-3646. Any person who believes s/he has been discriminated against should write to: ADF&G, PO Box 25526, Juneau, AK 99802-5526; or O.E.O., U.S. Department of the Interior, Washington, DC 20240.